scholarly journals Preparation, thermal analysis, and crystal structure refinement of the quaternary alloy (CuIn)2NbTe5

2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
P. Grima-Gallardo ◽  
M. Palmera ◽  
J. A. Aitken ◽  
J. Cisterna ◽  
I. Brito ◽  
...  

The quaternary alloy (CuIn)2NbTe5 was synthesized by solid-state reaction using the melt and annealing technique. The thermal analysis shows that this compound melts at 1026 K. The present alloy is isotypic with Cu2FeIn2Se5 and crystallizes in the space group P2c (Nº 112), with unit cell parameters a = 6.1964(2) Å, c = 12.4761(4) Å, c/a = 2.01, V = 479.02(3) Å3. (CuIn)2NbTe5, belonging to the system (CuInSe2)1-x(FeSe)x with x= ⅓, is a new adamantane compound with a P-chalcopyrite structure. This structure is characterized by a double alternation of anions-cations layers according to the Te-Te : Nb-In-Nb-In : Cu-In-Cu-In : Te-Te sequence, along the 010 direction.

2017 ◽  
Vol 32 (S1) ◽  
pp. S106-S109 ◽  
Author(s):  
Daria Petrova ◽  
Dina Deyneko ◽  
Sergey Stefanovich ◽  
Bogdan Lazoryak

New Ca8−xPbxCdBi(VO4)7 with the whitlockite-type structure were prepared by a standard solid-state method in air. Le Bail decomposition was used to determine unit-cell parameters. Structural refining was carried out by Rietveld's method. It is found that Bi3+ cations located partially in M1 and M2 sites along with calcium, while M3 site is settled in half by Pb2+-ions. Second-harmonic generation demonstrate highest non-linear optical activity and along with dielectric investigations indicate polar space group R3c.


2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


2013 ◽  
Vol 77 (7) ◽  
pp. 2931-2939 ◽  
Author(s):  
U. Hålenius ◽  
F. Bosi

AbstractOxyplumboroméite, Pb2Sb2O7, is a new mineral of the roméite group of the pyrochlore supergroup (IMA 2013-042). It is found together with calcite and leucophoenicite in fissure fillings in tephroite skarn at the Harstigen mine, Värmland, Sweden. The mineral occurs as yellow to brownish yellow rounded grains or imperfect octahedra. Oxyplumboroméite has a Mohs hardness of ∼5, a calculated density of 6.732 g/cm3 and is isotropic with a calculated refractive index of 2.061. Oxyplumboroméite is cubic, space group Fdm, with the unit-cell parameters a = 10.3783(6) Å, V = 1117.84(11) Å3 and Z = 8. The strongest five X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 2.9915(100)(222), 2.5928(32)(400), 1.8332(48)(440), 1.5638(38)(622) and 1.1900(12)(662). The crystal structure of oxyplumboroméite was refined to an R1 index of 3.02% using 160 unique reflections collected with MoKα radiation. Electron microprobe analyses in combination with crystal-structure refinement, infrared, Mössbauer and electronic absorption spectroscopy resulted in the empirical formula A(Pb0.92Ca0.87Mn0.09Sr0.01Na0.05)Σ1.93B(Sb1.73Fe3+0.27)Σ2.00X+Y[O6.64(OH)0.03]Σ6.67. Oxyplumboroméite is the Pb analogue of oxycalcioroméite, ideally Ca2Sb2O7.


2018 ◽  
Vol 82 (6) ◽  
pp. 1253-1259
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti

ABSTRACTMagnesio-hornblende (IMA2017-059) has been characterized in a specimen collected in the sand dunes of Lüderitz, Karas Region, Namibia. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is A(□0.73Na0.22K0.05)Σ1.00B(Ca1.79Fe2+0.10Mg0.04Mn2+0.03Na0.04)Σ2.00C(Mg3.48Fe2+0.97Al0.28Fe3+0.23Cr3+0.01Ti0.03)Σ5.00T(Si7.18Al0.82)Σ8.00O22W[(OH)1.93F0.05Cl0.02]Σ2.00. Magnesio-hornblende is biaxial (–), with α = 1.640(2), β = 1.654(2), γ = 1.666(2) (measured with gel-filtered Na light, λ = 589.9 nm), 2V (meas.) = 82(1)° and 2V (calc.) = 84.9°. The unit-cell parameters are a = 9.8308(7), b = 18.0659(11), c = 5.2968(4) Å, β = 104.771(6)° and V = 909.64 (11) Å3 with Z = 2 and space group C2/m. The strongest eight reflections in the X-ray powder pattern [d values (in Å), I, (hkl)] are: 2.709, 100, (151); 8.412, 74, (110); 3.121, 73, (310); 2.541, 58, ($\bar{2}$02); 3.386, 49, (131); 2.596, 45, (061); 2.338, 41, ($\bar{3}$51); and 2.164, 39, (261).


2016 ◽  
Vol 80 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
Fernando Cámara ◽  
...  

AbstractFerro-ferri-hornblende is a new member of the amphibole supergroup (IMA-CNMNC 2015-054). It has been found in a rock specimen from the historical collection of Leandro De Magistris, which was collected at the Traversella mine (Val Chiusella, Ivrea, Piemonte, Italy). The specimen was catalogued as ‘speziaite', and contains a wide range of amphibole compositions from tremolite/actinolite to magnesio-hastingsite. The end-member formula of ferro-ferri-hornblende is A□BCa2c(Fe+Fe3+)T(Si7Al) O22W(OH)2 , which requires SiO2 43.41, Al2O3 5.26, FeO 29.66, Fe2O3 8.24 CaO 11.57, H2O 1.86, total 100.00 wt.%. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement for the holotype crystal is A(Na0.10K0.13) Σ=0.23B(Ca 1.93Na0.07)Σ=2.00C(Mg1.16Fe2+3.21Mn0.O6Fe3+0.45 Al0.12Ti 0.01)Σ=5.01T(Si7.26Al0. 74)Σ=8.00 O22W(OH1.89F0.01C10.10)Σ=2.00- Ferro-ferri-hornblende is biaxial (-), with α = 1.697(2), P = 1 .722(5), γ = 1.726(5) and 2V (meas.) = 35.7(1.4)°, 2V (calc.) = 43.1°. The unit-cell parameters are a = 9.9307(5), b = 18.2232(10), c = 5.3190(3) Å, β = 104.857(1)°, V= 930.40 (9) Å3, Z= 2, space group C2/m. The a:b:c ratio is 0.545:1:0.292. The strongest eight reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 8.493, 100, (110); 2.728, 69, (151); 3.151, 47, (310); 2.555, 37, (); 2.615, 32, (061); 2.359, 28, (); 3.406, 26, (131); 2.180, 25, (261). Type material is deposited in the collections of the Museo di Mineralogia, Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, under the catalogue number 2015-01. Sample M/U15285 from the historical collection of Luigi Colomba, presently at the Museo Regionale di Scienze Naturali di Torino, was also checked, and the presence of ferro-ferri-hornblende was confirmed.


2020 ◽  
Vol 71 (8) ◽  
pp. 72-79
Author(s):  
Gheorghe Branoiu ◽  
Aura Cehlarov ◽  
Diana Cursaru ◽  
Sonia Mihai

In the paper has been analyzed the crystal structure of a celestine sample from Valea Sarii (Vrancea region, Romania) located in the Eastern Carpathians Foredeep. The celestine sample was also studied by optical microscopy, chemical and thermal analysis. The unit cell parameters of the celestine structure refined in the space group Pnma were: a=8.39769 �, b=5.38415 �, c=6.88167 �, Z=4. The chemical composition of the celestine crystals was determined by EDX analysis. The optical characteristics of the sample were studied by optical microscopy. A new set of the unit cell parameters and fractional coordinates of the celestine crystal structure were determined. Also were determined the bond lengths in the Sr-O12 and SO4 polyhedra. The sample was collected in the massive mineralization area of the Valea Sarii ore deposit, the largest celestine ore deposit in Romania.


2019 ◽  
Vol 83 (4) ◽  
pp. 587-593
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Giancarlo Della Ventura ◽  
Gunnar Färber

AbstractPotassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $. The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $)Σ2.00C(Mg3.85${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $Ni0.01${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ($\bar 2$02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221,$\bar 1$51).


2018 ◽  
Vol 15 (29) ◽  
pp. 228-233
Author(s):  
J. A. FLORES-CRUZ ◽  
G. E. DELGADO ◽  
J. E. CONTRERAS ◽  
M. QUINTERO ◽  
L. NIEVES ◽  
...  

The chalcogenide compound CuNbGaSe3, belonging to the system I-II-III-VI3, has been investigated by means of X-ray powder diffraction and its crystal structure has been refined by the Rietveld method.This is a material of the semiconductor type, which improves the properties of a simple semiconductor like CuGaSe2 because it ads spintronic applications due to its magnetic behavior. The powder pattern was composed by 94.2% of the principal phase CuNbGaSe3 and 5.8% of the secondary phase Cu0.667NbSe2. This material crystallizes with a CuFeInSe3-type structure in the tetragonal space group P4 2c (Nº 112), unit cell parameters a = 5.6199(4) Å, c = 11.0275(2) Å, V = 348.28(4) Å3, with a normal adamantane-structure where occurs a degradation of symmetry from the chalcopyrite structure I4 2d to a related structure P4 2c.


2018 ◽  
Vol 64 (6) ◽  
pp. 548
Author(s):  
Gustavo Marroquin ◽  
Gerzon E. Delgado ◽  
Pedro Grima-Gallardo ◽  
Miguel Quintero

The crystal structure of the quaternary compound CuVInSe3 belonging to the system (CuInSe2)1-x(VSe)x with x= ½, was analyzed using X-ray powder diffraction data. This material was synthesized by the melt and anneal method and crystallizes in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 5.7909(4) Å, c = 11.625(1) Å, V = 389.84(5) Å3. The Rietveld refinement of 25 instrumental and structural variables led to Rexp = 6.6 %, Rp = 8.7 %, Rwp = 8.8 % and S = 1.3 for 4501 step intensities and 153 independent reflections. This compound has a normal adamantane structure and is isostructural with CuFeInSe3. The DTA indicates that this compound melts at 1332 K.


2018 ◽  
Vol 82 (1) ◽  
pp. 189-198
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti ◽  
Olav Revheim ◽  
...  

ABSTRACTClino-suenoite, ideally □${\rm Mn}_{2}^{2 +} $Mg5Si8O22(OH)2 is a new amphibole of the magnesium-iron-manganese subgroup of the amphibole supergroup. The type specimen was found at the Lower Scerscen Glacier, Valmalenco, Sondrio, Italy, where it occurs in Mn-rich quartzite erratics containing braunite, rhodonite, spessartine, carbonates and various accessory minerals. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: ANa0.04B(${\rm Mn}_{1.58}^{2 +} $Ca0.26Na0.16)Σ2.00C(Mg4.21${\rm Mn}_{0. 61}^{2 +} {\rm Fe}_{0.04}^{2 +} $Zn0.01Ni0.01${\rm Fe}_{0.08}^{3 +} $Al0.04)Σ5.00TSi8.00O22W[(OH1.94F0.06)]Σ=2.00. Clino-suenoite is biaxial (+), with α = 1.632(2), β = 1.644(2), γ = 1.664(2) and 2Vmeas. = 78(2)° and 2Vcalc. = 76.3°. The unit-cell parameters in the C2/m space group are a = 9.6128(11), b = 18.073(2), c = 5.3073(6) Å, β = 102.825(2)° and V = 899.1(2) Å3 with Z = 2. The strongest ten reflections in the powder X-ray diffraction pattern [d (in Å), I, (hkl)] are: 2.728, 100, (151); 2.513, 77, ($\bar 2$02); 3.079, 62, (310); 8.321, 60, (110); 3.421, 54, (131); 2.603, 42, (061); 2.175, 42, (261); 3.253, 41, (240); 2.969, 40, (221); 9.036, 40, (020).


Sign in / Sign up

Export Citation Format

Share Document