scholarly journals An algebraic approach to a charged particle in a uniform magnetic field

2018 ◽  
Vol 64 (2) ◽  
pp. 127
Author(s):  
D. Ojeda-Guillén ◽  
M. Salazar-Ramírez ◽  
R.D. Mota ◽  
V.D. Granados

We study the problem of a charged particle in a uniform magnetic field with two different gauges, known as Landau and symmetric gauges. By using a similarity transformation in terms of the displacement operator we show that, for the Landau gauge, the eigenfunctions for this problem are the harmonic oscillator number coherent states. In the symmetric gauge, we calculate the SU(1; 1) Perelomov number coherent states for this problem in cylindrical coordinates in a closed form. Finally, we show that these Perelomov number coherent states are related to the harmonic oscillator number coherent states by the contraction of the SU(1; 1) group to the Heisenberg-Weyl group.

10.14311/1185 ◽  
2010 ◽  
Vol 50 (3) ◽  
Author(s):  
J. P. Gazeau ◽  
M. C. Baldiotti ◽  
D. M. Gitman

Berezin-Klauder-Toeplitz (“anti-Wick”) or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian) coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.


2009 ◽  
Vol 24 (38) ◽  
pp. 3129-3136 ◽  
Author(s):  
XIANG-GUO MENG ◽  
JI-SUO WANG ◽  
HONG-YI FAN

In the newly constructed entangled state representation embodying quantum entanglement of Einstein, Podolsky and Rosen, the usual wave function of atomic coherent state ∣τ〉 = exp (μJ+-μ*J-)∣j, -j〉 turns out to be just proportional to a single-variable ordinary Hermite polynomial of order 2j, where j is the spin value. We then prove that a two-dimensional time-independent anisotropic harmonic oscillator in a uniform magnetic field possesses energy eigenstates which can be classified as the states ∣τ〉 in terms of the spin values j.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Suman Sarkar ◽  
Bikash Sahoo

Abstract The stagnation point flow of a non-Newtonian Reiner–Rivlin fluid has been studied in the presence of a uniform magnetic field. The technique of similarity transformation has been used to obtain the self-similar ordinary differential equations. In this paper, an attempt has been made to prove the existence and uniqueness of the solution of the resulting free boundary value problem. Monotonic behavior of the solution is discussed. The numerical results, shown through a table and graphs, elucidate that the flow is significantly affected by the non-Newtonian cross-viscous parameter L and the magnetic parameter M.


Sign in / Sign up

Export Citation Format

Share Document