scholarly journals Perfilometría 3D por proyección desenfocada de patrones binarios

2020 ◽  
Vol 1 (1) ◽  
pp. 18-24
Author(s):  
A. Silva ◽  
J. L. Flores ◽  
A. Muñoz ◽  
G. García-Torales

Las técnicas basadas en proyección de luz estructurada son ampliamente estudiadas y utilizadas en el área de perfilometría tridimensional, esto debido a la capacidad para obtener información completa de la superficie de objetos. Algunas de estas técnicas se basan en la proyección de patrones de intensidad sinusoidal y el uso de algoritmos de corrimiento de fase. En el caso de la reconstrucción tridimensional de objetos dinámicos en movimiento, uno de los desafíos es reducir el número de pasos o imágenes a ser proyectadas. Sin embargo, la precisión de estos sistemas se reduce conforme decrece el número de patrones (a un mínimo de tres). El sistema de proyección presenta una respuesta no lineal, lo cual introduce armónicos en los patrones adquiridos y en la recuperación de fase. En los últimos años, la proyección desenfocada de patrones binarios para generar patrones de franjas cuasi sinusoidales ha emergido como una alternativa para evitar el problema de no linealidad del proyector y, por ende, reducir el error en la fase. En este trabajo se presenta una revisión de distintos métodos propuestos en la literatura para generar patrones binarios, los cuales sintetizan patrones cuasi sinusoidales cuando son proyectados fuera de foco. Adicionalmente, analizamos el error de fase en función a la cantidad de desenfoque y el tamaño del periodo fundamental de las franjas. The techniques of structured light projection are widely studied in the area of three-dimensional profilometry, due to its ability to obtain information from the surface of an object. In particular, those based on the projection of a sequence of sinusoidal intensity patterns and the use of phase shift algorithms. In the case of three-dimensional reconstruction of dynamic or moving objects, one of the trends is to reduce the number of steps or patterns to be projected. However, the accuracy of these systems is reduced as the number of steps decreases (to a minimum of 3 steps). This is because the projection systems present a non-linear response, which translates into the introduction of harmonics in the acquired sinusoidal patterns, and therefore, error in the recovered phase. In the last years, the defocused projection of binary patterns has emerged as an alternative to avoid the projector’s non-linearity and generates quasi-sinusoidal fringe patterns to reduce the phase error. In this work, we review different techniques that have been proposed in the literature to generate binary patterns, which synthesize quasi-sinusoidal patterns when projected out of focus. In addition, we analyze the error in the phase as a function of the defocusing amount and the fringe pitch.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei Feng ◽  
Shaojing Tang ◽  
Shinan Xu ◽  
Tong Qu ◽  
Daxing Zhao

Digital fringe projection measurement technology has been widely used in computer vision and optical three-dimensional (3D) measurement. Considering the phase error caused by the gamma distortion and nonlinear error, the active gamma precorrection and phase error compensation methods based on the three-frequency with three-phase shifts are designed to reversely solve the initial phase and accurately compensate phase error. On the one hand, the gamma coefficient of the measurement system depends on precoding two groups of fringe sequences with different gamma coefficients to calculate the corresponded proportional coefficient of harmonic component. On the other hand, the phase error compensation method is designed to compensate the phase error and improve the accuracy and speed of phase calculation after gamma correction. Experiments show that the proposed precalibration gamma coefficient method can effectively reduce the sinusoidal error in nearly 80 percent which only needs fewer fringe patterns. Compared with the traditional three-frequency with four-phase shift method, the proposed method not only has higher phase accuracy and better noise resistance but also has good robustness and flexibility, which is not limited to the gamma distortion model.


Sign in / Sign up

Export Citation Format

Share Document