light line
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Christoph Doering ◽  
Johannes Strassner ◽  
Henning Fouckhardt

Meanwhile, electrowetting-on-dielectric (EWOD) is a well-known phenomenon, even often exploited in active micro-optics to change the curvature of microdroplet lenses or in analytical chemistry with digital microfluidics (DMF, lab on a chip 2.0) to move/actuate microdroplets. Optoelectrowetting (OEW) can bring more flexibility to DMF because in OEW, the operating point of the lab chip is locally controlled by a beam of light, usually impinging onto the chip perpendicularly. As opposed to pure EWOD, for OEW, none of the electrodes has to be structured, which makes the chip design and production technology simpler; the path of any actuated droplet is determined by the movement of the light spot. However, for applications in analytical chemistry, it would be helpful if the space both below as well as that above the lab chip were not obstructed by any optical components and light sources. Here, we report on the possibility to actuate droplets by laser light beams, which traverse the setup parallel to the chip surface and inside the OEW layer sequence. Since microdroplets are grabbed by this surface-parallel, nondiverging, and nonexpanded light beam, we call this principle “light line OEW” (LL-OEW).


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
John Pendry ◽  
Paloma Huidobro ◽  
Mario Silveirinha ◽  
Emanuele Galiffi

Abstract We ask the question “what happens to Bloch waves in gratings synthetically moving at near the speed of light?”. First we define a constant refractive index (CRI) model in which Bloch waves remain well defined as they break the light barrier, then show their dispersion rotating through 360° from negative to positive and back again. Next we introduce the effective medium approximation (EMA) then refine it into a 4-wave model which proves to be highly accurate. Finally using the Bloch waves to expand a pulse of light we demonstrate sudden inflation of pulse amplitude combined with reversal of propagation direction as a luminal grating is turned on.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012083
Author(s):  
S I Lepeshov ◽  
A A Bogdanov

Abstract Here, the enhancement of electromagnetic field confinement in an all-dielectric metasurface is demonstrated. The enhanced confinement is achieved when the polarization singularity, corresponding to accidental bound states in the continuum, moves to the domain of evanescent fields (under the light line). Such a hybridization of the bound states and evanescent waves results in the 70-fold increase of the electric field enhancement on the top of the metasurface and boosting of the electric field localization.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012069
Author(s):  
V. Kondratyev ◽  
D. Permyakov ◽  
V. Kravtsov ◽  
D. N. Krizhanovskii ◽  
A. K. Samusev

Abstract In this work, we demonstrate an approach to study exciton-polaritons supported by transition metal dichalcogenide monolayers coupled to an unstructured planar waveguide below the light line. In order to excite and probe such waves propagating along the interface with the evanescent fields exponentially decaying away from the guiding layer, we employ a hemispherical ZnSe solid immersion lens (SIL) precisely positioned in the vicinity of the sample. We visualize the dispersion of guided polaritons using back focal (Fourier) plane imaging spectroscopy with the high-NA objective lens focus brought to the center of SIL. This results in the effective numerical aperture of the system exceeding an exceptional value of 2.2 in the visible range. In the experiment, we study guided polaritons supported by a WS2 monolayer transferred on top of a Ta2O5 plane-parallel optical waveguide. We confirm room-temperature strong light-matter coupling regime enhanced by ultra-low intrinsic ohmic and radiative losses of the waveguide. Note that in the experiment, total radiative losses can be broadly tuned by controlling SIL-to-sample distance. This gives a valuable degree of freedom for the study of polariton properties. Our approach lays the ground for future studies of light-matter interaction employing guided modes and surface waves.


2021 ◽  
Author(s):  
Chengkun Zhang ◽  
Hironobu Yoshimi ◽  
Yasutomo Ota ◽  
Satoshi Iwamoto

Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4545-4554
Author(s):  
Shiqi Jiang ◽  
Ronny Förster ◽  
Malte Plidschun ◽  
Jens Kobelke ◽  
Ron Fatobene Ando ◽  
...  

AbstractThree-dimensional (3D) tracking of nano-objects represents a novel pathway for understanding dynamic nanoscale processes within bioanalytics and life science. Here we demonstrate 3D tracking of diffusing 100 nm gold nanosphere within a water-filled optofluidic fiber via elastic light scattering–based position retrieval. Specifically, the correlation between intensity and position inside a region of a fiber-integrated microchannel has been used to decode the axial position from the scattered intensity, while image processing–based tracking was used in the image plane. The 3D trajectory of a diffusing gold nanosphere has been experimentally determined, while the determined diameter analysis matches expectations. Beside key advantages such as homogenous light-line illumination, low-background scattering, long observation time, large number of frames, high temporal and spatial resolution and compatibility with standard microscope, the particular properties of operating with water defines a new bioanalytical platform that is highly relevant for medical and life science applications.


ACS Photonics ◽  
2020 ◽  
Vol 7 (9) ◽  
pp. 2448-2459
Author(s):  
Kishan S. Menghrajani ◽  
William L. Barnes
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document