scholarly journals Eddy Covariance Measurements of Carbon dioxide (CO2) Exchange in Pichavaram Mangrove Ecosystem, Southeast Coast of India

Author(s):  
P. Gnanamoorthy ◽  
V. Selvam ◽  
S. Chakraborty ◽  
D. Pramit ◽  
A. Karipot
2008 ◽  
Vol 56 (1) ◽  
pp. 1 ◽  
Author(s):  
Dennis Baldocchi

Published eddy covariance measurements of carbon dioxide (CO2) exchange between vegetation and the atmosphere from a global network are distilled, synthesised and reviewed according to time scale, climate and plant functional types, disturbance and land use. Other topics discussed include history of the network, errors and issues associated with the eddy covariance method, and a synopsis of how these data are being used by ecosystem and climate modellers and the remote-sensing community. Spatial and temporal differences in net annual exchange, FN, result from imbalances in canopy photosynthesis (FA) and ecosystem respiration (FR), which scale closely with one another on annual time scales. Key findings reported include the following: (1) ecosystems with the greatest net carbon uptake have the longest growing season, not the greatest FA; (2) ecosystems losing carbon were recently disturbed; (3) many old-growth forests act as carbon sinks; and (4) year-to-year decreases in FN are attributed to a suite of stresses that decrease FA and FR in tandem. Short-term flux measurements revealed emergent-scale processes including (1) the enhancement of light use efficiency by diffuse light, (2) dynamic pulses in FR following rain and (3) the acclimation FA and FR to temperature. They also quantify how FA and FR respond to droughts and heat spells.


2002 ◽  
Vol 9 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Sabina Dore ◽  
Graham J. Hymus ◽  
David P. Johnson ◽  
C. R. Hinkle ◽  
Riccardo Valentini ◽  
...  

2013 ◽  
Vol 10 (11) ◽  
pp. 18309-18335 ◽  
Author(s):  
E. Podgrajsek ◽  
E. Sahlée ◽  
D. Bastviken ◽  
J. Holst ◽  
A. Lindroth ◽  
...  

Abstract. Fluxes of carbon dioxide (CO2) and methane (CH4) from lakes may have a large impact on the magnitude of the terrestrial carbon sink. Traditionally lake fluxes have been measured using the floating chambers (FC) technique, however, several recent studies use the eddy covariance (EC) method. We present simultaneous flux measurements using both methods at the lake Tämnaren in Sweden during field campaigns in 2011 and 2012. Only very few similar studies exist. For CO2 flux, the two methods agree relatively well during some periods, but deviate substantially at other times. The large discrepancies might be caused by heterogeneity of partial pressure of CO2 (pCO2w) in the EC flux footprint. The methods agree better for CH4 fluxes, it is, however, clear that short-term discontinuous FC measurements are likely to miss important high flux events.


2020 ◽  
Author(s):  
Lauri Heiskanen ◽  
Juha-Pekka Tuovinen ◽  
Aleksi Räsänen ◽  
Tarmo Virtanen ◽  
Sari Juutinen ◽  
...  

Abstract. The patterned microtopography of subarctic mires generates a variety of environmental conditions, and carbon dioxide (CO2) and methane (CH4) dynamics vary spatially among different plant community types. We studied the CO2 and CH4 exchange between a subarctic fen and the atmosphere at Kaamanen in northern Finland based on flux chamber and eddy covariance measurements in 2017–2018. We observed strong spatial variation in carbon dynamics between the four main plant community types (PCTs) studied, which were largely controlled by water table level and differences in vegetation composition. The ecosystem respiration (ER) and gross primary productivity (GPP) increased gradually from the wettest PCT to the drier ones, and both ER and GPP were larger for all PCTs during the warmer and drier growing season 2018. We estimated that in 2017 the growing season CO2 balances of the PCTs ranged from −20 g C m−2 (Trichophorum tussock PCT) to 64 g C m−2 (string margin PCT), while in 2018 all PCTs were small CO2 sources (10–22 g C m−2). We observed small growing season CH4 emission sums (


2016 ◽  
Author(s):  
W. Pawlak ◽  
K. Fortuniak

Abstract. In the period between July 2013 and August 2015, continuous measurements of turbulent methane exchange between an urbanised area and the atmosphere were carried out in Łódź. Such long, continuous measurement series of turbulent methane exchange between the city and the atmosphere are still a rarity. The measurement station was located in the centre of the city, where fluxes of energy (sensible and latent heat) and fluxes of mass (carbon dioxide) have been continuously measured since 2000 and 2007, respectively. In the immediate vicinity of the measurement station there are potential sources of methane, such as streets with vehicle traffic or dense sewerage and natural gas networks. To determine the fluxes, the eddy covariance technique was used; the measurement station was equipped with instruments for recording fluctuations in the vertical component of the wind speed (an ultrasonic 3D anemometer, RM Young 81000, RM Young, USA) as well as the concentration of methane in the air (an open path Li 7700 CH4 Analyser, Li-cor, USA). The devices were mounted on a mast at a height of 37 metres above ground level and, on average, 20 metres over the roofs of the surrounding buildings. The results were therefore averaged for an area with a diameter of approximately 1 kilometre. Our aim was to investigate the temporal variability of the turbulent exchange of methane in the city-atmosphere system. The results show in the first place that positive methane fluxes (turbulent gas transport from the surface to the atmosphere) definitely dominate compared with negative fluxes. This indicates that the study area of the centre of Łódź is a net source of methane to the troposphere. The measurements also indicated the existence of a clear annual rhythm of the turbulent flux of methane in the centre of Łódź (on average, the values observed in winter amounted to ~40–60 nmol m−2 s−1 and were significantly larger than in summer). The daily variability of the flux of CH4 (FCH4) is faintly visible throughout the year. The studied area of the centre of Łódź is also characterised by a cycle of methane exchange – the values measured on working days were higher by 6.6 % (winter) to 5.6 % (summer) than those observed at weekends. The largest monthly exchange was characteristic of winter months (from 2.0 to 2.7 g m−2 month−1) and the lowest occurred in summer (from 0.8 to 1.0 g m−2 month−1). The mean daily patterns of FCH4 in consecutive months were used to determine the cumulative annual exchange. In 2014, the centre of Łódź emitted a net quantity of almost 18 g m−2. Furthermore, the study analyses the covariability of methane and carbon dioxide fluxes.


1999 ◽  
Vol 37 (3) ◽  
pp. 223-233 ◽  
Author(s):  
A. L. Ramanathan ◽  
V. Subramanian ◽  
R. Ramesh ◽  
S. Chidambaram ◽  
A. James

2011 ◽  
Vol 45 (33) ◽  
pp. 6057-6069 ◽  
Author(s):  
A. Christen ◽  
N.C. Coops ◽  
B.R. Crawford ◽  
R. Kellett ◽  
K.N. Liss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document