CHAPTER IV. SECOND FUNDAMENTAL FORM. GAUSSIAN AND MEAN CURVATURE OF A SURFACE

1959 ◽  
pp. 118-153
Author(s):  
Chongzhen Ouyang ◽  
Zhenqi Li

AbstractThis paper investigates complete space-like submainfold with parallel mean curvature vector in the de Sitter space. Some pinching theorems on square of the norm of the second fundamental form are given


2011 ◽  
Vol 54 (1) ◽  
pp. 67-75 ◽  
Author(s):  
QIN ZHANG

AbstractLet Mn be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1(1), n ≤ 8 and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and $S_0=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4+4(n-1)H^2}$.


Author(s):  
Hilário Alencar ◽  
Gregório Silva Neto ◽  
Detang Zhou

Abstract In this paper, we prove that a two-dimensional self-shrinker, homeomorphic to the sphere, immersed in the three-dimensional Euclidean space ℝ 3 {{\mathbb{R}}^{3}} is a round sphere, provided its mean curvature and the norm of the its position vector have an upper bound in terms of the norm of its traceless second fundamental form. The example constructed by Drugan justifies that the hypothesis on the second fundamental form is necessary. We can also prove the same kind of rigidity results for surfaces with parallel weighted mean curvature vector in ℝ n {{\mathbb{R}}^{n}} with radial weight. These results are applications of a new generalization of Cauchy’s Theorem in complex analysis which concludes that a complex function is identically zero or its zeroes are isolated if it satisfies some weak holomorphy.


2015 ◽  
Vol 92 (1) ◽  
pp. 133-144 ◽  
Author(s):  
JULIAN SCHEUER

We prove${\it\epsilon}$-closeness of hypersurfaces to a sphere in Euclidean space under the assumption that the traceless second fundamental form is${\it\delta}$-small compared to the mean curvature. We give the explicit dependence of${\it\delta}$on${\it\epsilon}$within the class of uniformly convex hypersurfaces with bounded volume.


2020 ◽  
Vol 31 (05) ◽  
pp. 2050035
Author(s):  
Yong Luo ◽  
Hongbing Qiu

By using the integral method, we prove a rigidity theorem for spacelike self-shrinkers in pseudo-Euclidean space under a minor growth condition in terms of the mean curvature and the second fundamental form, which generalizes Theorem 1.1 in [H. Q. Liu and Y. L. Xin, Some Results on Space-Like Self-Shrinkers, Acta Math. Sin. (Engl. Ser.) 32(1) (2016) 69–82].


2011 ◽  
Vol 22 (01) ◽  
pp. 131-143 ◽  
Author(s):  
GANGYI CHEN ◽  
HAIZHONG LI

Let M be an n-dimensional closed hypersurface with constant mean curvature H in a unit sphere Sn+1, n ≤ 8, and S the squared length of the second fundamental form of M. If |H| ≤ ε(n), then there exists a positive constant α(n, H), which depends only on n and H, such that if S0 ≤ S ≤ S0 + α(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ε(n) is a positive constant depending only on n and [Formula: see text].


Author(s):  
Stephen Lynch ◽  
Huy The Nguyen

AbstractWe study solutions of high codimension mean curvature flow defined for all negative times, usually referred to as ancient solutions. We show that any compact ancient solution whose second fundamental form satisfies a certain natural pinching condition must be a family of shrinking spheres. Andrews and Baker (J Differ Geom 85(3):357–395, 2010) have shown that initial submanifolds satisfying this pinching condition, which generalises the notion of convexity, converge to round points under the flow. As an application, we use our result to simplify their proof.


Author(s):  
Knut Smoczyk

AbstractWe study self-expanding solutions $M^{m}\subset \mathbb {R}^{n}$ M m ⊂ ℝ n of the mean curvature flow. One of our main results is, that complete mean convex self-expanding hypersurfaces are products of self-expanding curves and flat subspaces, if and only if the function |A|2/|H|2 attains a local maximum, where A denotes the second fundamental form and H the mean curvature vector of M. If the principal normal ξ = H/|H| is parallel in the normal bundle, then a similar result holds in higher codimension for the function |Aξ|2/|H|2, where Aξ is the second fundamental form with respect to ξ. As a corollary we obtain that complete mean convex self-expanders attain strictly positive scalar curvature, if they are smoothly asymptotic to cones of non-negative scalar curvature. In particular, in dimension 2 any mean convex self-expander that is asymptotic to a cone must be strictly convex.


Sign in / Sign up

Export Citation Format

Share Document