Wear and corrosion behavior of coconut shell ash (CSA) reinforced Al6061 metal matrix composites

2020 ◽  
Vol 62 (1) ◽  
pp. 77-84
Author(s):  
Lakshmikanthan Purushothaman ◽  
Prabu Balakrishnan
2019 ◽  
Author(s):  
Poornesh Mangalore ◽  
Akash ◽  
Akash Ulvekar ◽  
Abhiram ◽  
Joy Sanjay ◽  
...  

Author(s):  
Priyadarsini Morampudi ◽  
V.S.N. Venkata Ramana ◽  
Koona Bhavani ◽  
Ch. Kishore Reddy ◽  
K. Sri Ram Vikas

2020 ◽  
Vol 1002 ◽  
pp. 161-174
Author(s):  
Nawal Mohammed Dawood

Aluminium as matrix in particulars have been vastlys investigateds, this is becauses of the diverses applicationss of aluminium dues to its exceptional propertiess. Material scientistss alwayss face a challenges when it comess to the tribologicals and mechanicals propertiess of aluminium, as it exudess rather poors behaviours in these aspectss. Hences this works aims to improves the mechanicals and corrosives resistances of Aluminiums by reinforcings with aluminum oxides and Nickel throughs stir casting usings vortex techniques. Al-Ni-Al2O3 composites with percentages of Ni fixed at 20 % and Al2O3 differed through 4-8% in incrementss of 2 wt. % . Composites material was prepareds by stir castings using vortex techniques. The hardness value of the aluminiums matrix composites improved with increaseds percentages of Al2O3, maximums increase was obtaineds for 8% Al2O3 composite, viewing an increases of about 55%. A generals corrosions and erosion-corrosions for the Al-20%Ni bases alloys and the prepareds composites were carrieds out in 3.5wt% NaCl solutions as corrosives mediums for general corrosions while in erosion-corrosions with impacts angles 90° in slurry solutions ( 1wt%SiO2 sand in 3.5wt% NaCl solution as the erodent). It was founds that the general corrosions rates for composite specimens is lower than thats of the bases alloy (Al-20%Ni). In case of erosion-corrosion resultss, it was founds that the erosion corrosions resistances property of the prepareds composites improveds significantlys with the increaseds percentages of Al2O3. There wass a noticeable improvements in the corrosion resistances of the aluminiums composites compareds to its purest forms, owing to the presences of nickel. Howevers, the increases in Al2O3 percentages decrease the corrosions rates. The extreme decreases was obtaineds for 8% Al2O3 composites, with a decreases of 26% corrosion rates in (mpy) unit for composites material is lowers than that of the bases alloys.


2018 ◽  
Vol 25 (2) ◽  
pp. 213-228 ◽  
Author(s):  
Ashish Kumar Srivastava ◽  
Amit Rai Dixit ◽  
Sandeep Tiwari

AbstractMetal matrix composites (MMCs) are the new-generation advanced materials that have excellent mechanical properties, such as high specific strength, strong hardness, and strong resistance to wear and corrosion. All these qualities make MMCs suitable material in the manufacture of automobiles and aircraft. The machining of these materials is still difficult due to the abrasive nature of the reinforced particles and hardness of MMCs. The conventional machining of MMCs results in high tool wear and slow removal of materials, thereby increasing the overall machining cost. The nonconventional machining of these materials, on the contrary, ensures much better performance. This paper reviews various research works on the development of MMCs and the subsequent hybrid composites and evaluates their performances. Further, it discusses the influence of the process parameters of conventional and nonconventional machining on the performance of MMCs. At the end, it identifies the research gaps and future scopes for further investigations in this field.


Sign in / Sign up

Export Citation Format

Share Document