Partially Filled Flow Simulation Using Meshfree Method for High Viscosity Fluid in Plastic Mixer

2019 ◽  
Vol 34 (2) ◽  
pp. 279-289
Author(s):  
K. Sekiyama ◽  
S. Yamada ◽  
T. Nakagawa ◽  
Y. Nakayama ◽  
T. Kajiwara
2021 ◽  
Vol 321 ◽  
pp. 01014
Author(s):  
Makoto Sugimoto ◽  
Tatsuya Miyazaki ◽  
Zelin Li ◽  
Masayuki Kaneda ◽  
Kazuhiko Suga

Stator coils of automobiles in operation generate heat and are cooled by a coolant poured from above. Since the behavior characteristic of the coolant poured on the coils is not clarified yet due to its complexity, the three-dimensional two-phase flow simulation is conducted. In this study, as a steppingstone to the simulation of the liquid falling on the actual coils, the coils are modelled with horizontal rectangular pillar arrays whose governing parameters can be easily changed. The two-phase flows are simulated using the lattice Boltzmann method and the phase-field model, and the effects of the governing parameters, such as the physical properties of the cooling liquid, the wettability, and the gap between the pillars, on the wetting area are investigated. The results show that the oil tends to spread across the pillars because of its high viscosity. Moreover, the liquid spreads quickly when the contact angle is small. In the case that the pillars are stacked, the wetting area of the inner pillars is larger than that of the exposed pillars.


2014 ◽  
Vol 50 (5) ◽  
pp. 466-473 ◽  
Author(s):  
V. A. Arbuzov ◽  
E. V. Arbuzov ◽  
V. S. Berdnikov ◽  
N. S. Bufetov ◽  
Yu. N. Dubnishchev ◽  
...  

1995 ◽  
Vol 33 (1) ◽  
pp. 17-26 ◽  
Author(s):  
J. Aguirre-Pe ◽  
F.P. Plachco ◽  
S. Quisca

2015 ◽  
Vol 2015.90 (0) ◽  
pp. 449
Author(s):  
Yuki Yamaguchi ◽  
Hisato Minagawa ◽  
Ryo Kurimoto ◽  
Takahiro Yasuda

SPE Journal ◽  
2019 ◽  
Vol 25 (02) ◽  
pp. 744-758 ◽  
Author(s):  
Jianjun Zhu ◽  
Haiwen Zhu ◽  
Guangqiang Cao ◽  
Jiecheng Zhang ◽  
Jianlin Peng ◽  
...  

Summary As the second most widely used artificial-lift method in petroleum production (and first in accumulative production), electrical submersible pumps (ESPs) increase flow rates by converting kinetic energy to hydraulic pressure. ESPs are routinely characterized with water flow, and water performance curves are provided by the manufacturers (catalog curves) for designing ESP-based artificial-lift systems. However, the properties of hydrocarbon fluids are very different from those of water, especially the dynamic viscosities, which can significantly alter the ESP performance. Most of the existing methods to estimate ESP boosting pressure under high-viscosity fluid flow involve a strong empirical nature, and are derived by correlating experimental/field data with correction factors (e.g., Hydraulic Institute Standards 1955). A universally valid mechanistic model to calculate the ESP boosting pressure under viscous fluid flow is not yet available. In this paper, a new mechanistic model accounting for the viscosity effect of working fluids on ESP hydraulic performance is proposed, and it is validated with a large database collected from different types of ESPs. The new model starts from the Euler equations for characterizing centrifugal pumps, and introduces a conceptual best-match flow rate QBM, at which the outlet flow direction of the impeller matches the designed flow direction. The mismatch of velocity triangles, resulting from the varying liquid-flow rates, is used to derive the recirculation losses. Other head losses caused by flow-direction change, friction, leakage flow, and other factors. are incorporated into the new model as well. QBM is obtained by matching the predicted H-Q performance curve of an ESP with the catalog curves. Once QBM is determined, the ESP hydraulic head under viscous-fluid-flow conditions can be calculated. The specific speed (NS) of the studied ESPs in this paper ranges from 1,600 to 3,448, including one radial-type ESP and two mixed-type designs. The model-predicted ESP boosting pressure with water flow is found to match the catalog curves well if QBM is properly tuned. With high-viscosity fluid presence, the model predictions of ESP boosting pressure also agree well with the corresponding experimental data. For most calculation results within medium to high flow rates, the model prediction error is less than 15%. Unlike the empirical correlations that take experimental data points as inputs, the mechanistic model in this study does not require entering any experimental data, but can predict ESP boosting pressure under viscous fluid flow with a reasonable accuracy.


Sign in / Sign up

Export Citation Format

Share Document