Selection of Wrought Precipitation-Hardening Stainless Steels

1993 ◽  
pp. 482-494 ◽  
Alloy Digest ◽  
2009 ◽  
Vol 58 (5) ◽  

Abstract Crucible 174 SXR is a premium-quality precipitation-hardening stainless steel designed for use as rifle barrels. It is a modification of Crucible’s 17Cr-4Ni that offers substantially improved machinability without sacrificing toughness. Its excellent corrosion resistance approaches that of a 300 series austenitic stainless steel, while its high strength is characteristic of 400 series martensitic stainless steels. At similar hardness levels, Crucible 174 SXR offers greater toughness than either the 410 or 416 stainless steels which are commonly used for rifle barrels. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming and heat treating. Filing Code: SS-1034. Producer or source: Crucible Service Centers.


1977 ◽  
Vol 17 (02) ◽  
pp. 101-110 ◽  
Author(s):  
G.E. Moller

Moller, G.E., International Nickel Co., Inc., Torrance, Calif. Abstract Austenitic stainless steels are providing excellent trouble-free service in sea water for pumps, propellers, valves. and other marine equipment. propellers, valves. and other marine equipment. Occasionally, a failure occurs as the result of deep localized pitting in a crevice. Data are given showing that austenitic, ferritic. and martensitic stainless steels suffer pitting in crevices and under deposits in quiescent sea water. Austenitic stainless steels remain free from attack in high-velocity sea water. Low-purity ferritic and the martensitic stainless steels frequently pit in high-velocity sea water. Crevice corrosion can be controlled effectively with cathodic protection from iron, zinc. aluminum or magnesium galvanic anodes or impressed current cathodic protection by polarization to -0.6 v vs Calomel. Austenitic stainless steel performs well in many situations because it is a component of a multi-alloy assembly utilizing iron or steel. Examples from field experience arc given. Introduction During the past decade, there has been a growing use of austenitic stainless steel in marine equipment. Most applications have been successful but an unexpected failure has been observed occasionally. It is the purpose of this paper to describe when and how to use austenitic stainless steel with success. The selection of stainless steels appears to result from the engineering requirements of new, advanced, high-speed, high-reliability commercial, pleasure, and military craft. Ocean science and pleasure, and military craft. Ocean science and engineering, offshore oil production, fishing, and ocean mining are also contributing to the selection of stainless steels for sea-water applications. The increasing use of stainless steel in the marine environment is found in work-boat propellers, pump components, bow thrusters, valves, shafting pump components, bow thrusters, valves, shafting and shaft components, through-hull fittings, parts on data-gathering buoys, fasteners, and housings of oceanographic instruments. When austenitic stainless steel has given good, corrosion-free service, it is most often found to be used as a key component in a multi component, multi-alloy assembly or system receiving the benefit of built-in cathodic protection. For example, in Fig. 1 a cast Type 304 (Alloy Casting Institute CF-4) propeller is being used on a steel seagoing tugboat with zinc anodes attached to the rudder. Fig. 2 shows a cast ACI CE-30 power-plant sea-water circulation-pump impeller free power-plant sea-water circulation-pump impeller free of any corrosion after 6 years of service that was used in combination with an austenitic cast-iron suction bell and diffuser. SPEJ p. 101


2010 ◽  
Vol 636-637 ◽  
pp. 471-477 ◽  
Author(s):  
M. Cabeza ◽  
G. Castro ◽  
P. Merino ◽  
G. Pena ◽  
M. Román ◽  
...  

In the present work the age hardening parameters of a 14Ni (200) maraging steel are studied in order to optimize mechanical properties of the steel. The initial characterization of the as received solution annealed steel has been carried out by optical and scanning electron microscopy (LOM and SEM), and hardness measurements. To identify the structural changes during ageing, differential scanning calorimetry (DSC) tests were performed. Different time-temperature combinations were considered for the precipitation hardening treatment of as-quenched material samples. After hardness measurements, three of these treatments were selected for an in depth study. The obtained microstructure at the maximum hardness peaks then analysed (LOM, SEM and TEM) and mechanical behaviour (strength, toughness and wear resistance) was studied for the final selection of the age hardening conditions.


1993 ◽  
Vol 202 (1-2) ◽  
pp. 137-144 ◽  
Author(s):  
V.V. Sagaradze ◽  
V.M. Nalesnik ◽  
S.S. Lapin ◽  
V.M. Aliabev

Sign in / Sign up

Export Citation Format

Share Document