Some Contribution to the Selection of Filler Metals in Welding of Stainless Steels for Urea Service

1979 ◽  
Vol 11 (4) ◽  
pp. 97
Author(s):  
S. R. Jana
2006 ◽  
Vol 39 (4) ◽  
pp. 36
Author(s):  
S. K. Agrawal
Keyword(s):  

2013 ◽  
Vol 58 (4) ◽  
pp. 1007-1011 ◽  
Author(s):  
A. Winiowski ◽  
M. Rózanski

Abstract The research involved vacuum tests of brazing properties of silver filler metals, containing tin as well as tin and nickel, and used in brazing of chromium X6Cr17 and chromium-nickel X6CrNiTi18-10 stainless steels. The research also involved testing the strength and structural properties of brazed joints made of these steels. The tests were conducted on filler metals (silver brazing alloys) B-Ag68CuSn-730/755 (Ag68Cu28Sn4) and B-Ag65CuSnNi-740/767 (Ag65Cu28Sn5Ni2) and also, for comparative purposes, on the filler metal B-Ag72Cu-780 (Ag 272 according to PN-EN ISO 17672), most commonly applied in the vacuum brazing of high alloyed stainless steels. The brazing properties of the filler metals were tested by determining their wettability by means of the spreadability method. The strength of brazed joints made of the stainless steels was examined in a shear test. Research-related structural tests involved light and electron microscopy with an energy dispersive spectrometer (EDS). The comparative analysis of the properties of the filler metals revealed the positive impact of tin and nickel on the spreadability and wettability of the silver brazing alloys as well as on the quality and the shear strength of brazed joints.


Author(s):  
Lloyd A. Cooke

Advanced repair technologies have been introduced to the gas turbine industry over recent years. An increasing selection of coating systems is available which can be tailored to the specific operating environment. Automated welding systems and the use of custom weld filler metals for enhanced component life provide a means of reliably welding the new generation of high strength turbine blade alloys. Powder metallurgy processes have been introduced as an alternative to welding and have been used to upgrade certain components by employing higher strength repair materials than the original castings. In the paper, these and other technologies are assessed based on engine operating experience with direct comparison to the conventional repair techniques which they have replaced.


1977 ◽  
Vol 17 (02) ◽  
pp. 101-110 ◽  
Author(s):  
G.E. Moller

Moller, G.E., International Nickel Co., Inc., Torrance, Calif. Abstract Austenitic stainless steels are providing excellent trouble-free service in sea water for pumps, propellers, valves. and other marine equipment. propellers, valves. and other marine equipment. Occasionally, a failure occurs as the result of deep localized pitting in a crevice. Data are given showing that austenitic, ferritic. and martensitic stainless steels suffer pitting in crevices and under deposits in quiescent sea water. Austenitic stainless steels remain free from attack in high-velocity sea water. Low-purity ferritic and the martensitic stainless steels frequently pit in high-velocity sea water. Crevice corrosion can be controlled effectively with cathodic protection from iron, zinc. aluminum or magnesium galvanic anodes or impressed current cathodic protection by polarization to -0.6 v vs Calomel. Austenitic stainless steel performs well in many situations because it is a component of a multi-alloy assembly utilizing iron or steel. Examples from field experience arc given. Introduction During the past decade, there has been a growing use of austenitic stainless steel in marine equipment. Most applications have been successful but an unexpected failure has been observed occasionally. It is the purpose of this paper to describe when and how to use austenitic stainless steel with success. The selection of stainless steels appears to result from the engineering requirements of new, advanced, high-speed, high-reliability commercial, pleasure, and military craft. Ocean science and pleasure, and military craft. Ocean science and engineering, offshore oil production, fishing, and ocean mining are also contributing to the selection of stainless steels for sea-water applications. The increasing use of stainless steel in the marine environment is found in work-boat propellers, pump components, bow thrusters, valves, shafting pump components, bow thrusters, valves, shafting and shaft components, through-hull fittings, parts on data-gathering buoys, fasteners, and housings of oceanographic instruments. When austenitic stainless steel has given good, corrosion-free service, it is most often found to be used as a key component in a multi component, multi-alloy assembly or system receiving the benefit of built-in cathodic protection. For example, in Fig. 1 a cast Type 304 (Alloy Casting Institute CF-4) propeller is being used on a steel seagoing tugboat with zinc anodes attached to the rudder. Fig. 2 shows a cast ACI CE-30 power-plant sea-water circulation-pump impeller free power-plant sea-water circulation-pump impeller free of any corrosion after 6 years of service that was used in combination with an austenitic cast-iron suction bell and diffuser. SPEJ p. 101


2010 ◽  
Vol 15 (4) ◽  
pp. 336-343 ◽  
Author(s):  
Demian J. Kotecki

Duplex stainless steels (DSS, including super duplex stainless steels {SDSS}) have proven to be very useful engineering materials, albeit with somewhat different welding requirements than those of the more familiar austenitic stainless steels. Despite a generally good track record in welding of duplex stainless steels, certain pitfalls have been encountered with enough frequency that they deserve review. Inappropriate base metal specification often leads to unsuitable heat affected zone (HAZ) properties. Autogenous fusion zones are also of concern. This issue centers around nitrogen limits. The most frequently encountered is applying the UNS S31803 composition for 2205 DSS, instead of the S32205 composition. Inappropriate welding heat input arises most frequently with SDSS. While 0.5 to 1.5 kJ/mm is a normal heat input recommendation for SDSS, either a root pass or many small beads towards the low end of this heat input range tends to result in precipitation and/or secondary austenite formation in weld metal subjected to repeated thermal cycles from multiple weld passes. Inappropriate PWHT occurs when the enhanced nickel filler metals (typically 9% Ni) are used. DSS are not normally given PWHT, but extensive forming of heads, for example, or repair welding of castings, may require a postweld anneal. Specifications such as ASTM A790 and A890 call for annealing at 1040ºC minimum, and the fabricator tends to use temperatures close to that minimum. However, the enhanced nickel filler metals require higher temperatures to dissolve sigma phase that forms during heating to the annealing temperature.


2021 ◽  
pp. 132-139
Author(s):  
Jesang Hutchinson

Non-Convectional Machining (NCM) processes are used widely to produce accurate and intricate material shape such as titanium, stainless steels and resistant alloy that are of high strength, fiber-based composite, refractories and ceramics. The production of more complex shapes of materials using convectional machining processes is considered to be challenging. This research paper focusses on the section of the most effective NCM process. The ‘choice’ of the most considerable NCM process for a particular application could be seen as a multi-technique for making proper choices for diverse or conflicting approaches. To aid the process of choosing, various NCM techniques have been proposed in this research. This contribution focuses on the usage of unexplored NCM and Multi-Feature Decision-Making (MFDM) ‘choice’ issues.


Author(s):  
O. A. Abuzeid ◽  
A. I. Aljoboury ◽  
A.-H. I. Mourad ◽  
A. Alawar ◽  
M. Abou Zour

In earlier works, characterization and stress corrosion cracking of casings of brine recirculation pumps, used in desalination plants, had been investigated. These casings which were manufactured from two types of Ni resist ductile irons have been reported to show different service lives. Material selection of casings is believed to be one of possible factors to extend the service life of these pumps. Two types of stainless steels; UNS S31603 and UNS S32750 have been recommended as substitutes to Ni resist ductile irons. In this work, mechanical, metallurgical, and electrochemical tests have been conducted on as received samples, made of these two types of stainless steels. Results have shown considerable higher yield and tensile strengths and corrosion resistance for the UNS S32750 over the UNS S31603. Results have also shown reproduced pitting behavior illustrated by measured pitting potentials and visual observations for UNS S31603 samples. UNS S32750 samples have shown no signs of pitting.


2020 ◽  
Vol 843 ◽  
pp. 125-131
Author(s):  
Jurgen Mietz ◽  
Andreas Burkert

Due to the large number of stainless steels with different chemical composition and different microstructure the selection of the suitable material represents a huge challenge. In order to facilitate the appropriate grade selection, in the current European standard EN 1993-1-4 a procedure is defined based on the use of a look-up table considering the key variables that influence the selection of stainless steels. The table uses descriptions that competent designers should be able to readily understand or define without prior knowledge. The output from the look-up table is used to select alloys based on a Corrosion Resistance Class (CRC) from I to V. The advantage of this approach is that the designer simply specifies the relevant CRC and does not need to consider in detail which of the many (very similar) alloys to specify.


Sign in / Sign up

Export Citation Format

Share Document