filler metals
Recently Published Documents


TOTAL DOCUMENTS

438
(FIVE YEARS 80)

H-INDEX

22
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 412
Author(s):  
Elisa Fracchia ◽  
Jana Bidulská ◽  
Róbert Bidulský ◽  
Marco Actis Grande

In this work, AA1070 aluminium alloy sheets are joined using TIG and MIG welding after three different edge preparations. Shearing, water jet and plasma-cut processes were used to cut sheets, subsequently welded using ER5356 and ER4043 filler metals for TIG and MIG, respectively. Mechanical properties of the obtained sheets were assessed through tensile tests obtaining a relation between sheet preparation and welding tightness. Micro-hardness measures were performed to evaluate the effects of both welding and cutting processes on the micro-hardness of the alloy, highlighting that TIG welding gives rise to inhomogeneous micro-hardness behaviour. After tensile tests, surface fractures were observed employing scanning electron microscopy to highlight the relation between tensile properties and edge preparations. Fractures show severe oxidation in the water jet cut specimens, ductile fractures and gas porosities.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Jie Wu ◽  
Songbai Xue ◽  
Qingcheng Luo

The flame brazing of H62 brass using a novel, low-silver Cu-P brazing filler metal was investigated in this study. The effect of the addition of a trace amount of Sn on the microstructure and properties of Cu-7P-1Ag filler metals was analyzed by means of X-ray diffractometer, scanning electron microscopy and energy dispersive spectrometer. The addition of trace Sn led to a decrease in the solidus and liquidus temperatures of Cu-7P-1Ag filler metals. Meanwhile, the spreading performance of the filler metals on a H62 brass substrate was improved. The microstructure of the low-silver, Cu-P brazing filler metal was mainly composed of α-Ag solid solution, α-Cu solid solution and Cu3P; an increase of Sn content led to the transformation of the microstructure of the joints from a block to a lamellar structure. When the Sn content was 0.5 wt. %, the shear strength of the joint at room temperature reached 348 MPa, and the fracture morphologies changed from a cleavage to a quasi-cleavage structure.


Author(s):  
Uğur Gürol ◽  
Tuba Karahan ◽  
Sevim Erdöl ◽  
Ozan Çoban ◽  
Hakan Baykal ◽  
...  

2022 ◽  
Vol 101 (1) ◽  
pp. 1-14
Author(s):  
PAUL T. VIANCO ◽  
◽  
CHARLES A. WALKER ◽  
DENNIS DE SMET ◽  
ALICE KILGO ◽  
...  

This study examined the interface reaction between Ag-xAl filler metals having x = 0.2, 0.5, or 1.0 wt-% and Kovar™ base materials. The present investigation used the braze joint test sample configuration. The brazing conditions were 965°C (1769°F), 5 min; 995°C (1823°F), 20 min, and a vacuum of 10–7 Torr. Run-out was absent from all test samples. Combining these results with those of the Part 2 study that used high-Al, Ag-xAl filler metals (x = 2.0, 5.0, and 10 wt-%) established these conditions for run-out: Ag-xAl filler metals having x ≥ 2.0 wt-% Al, which result in reaction layer compositions, and (Fe, Ni, Co)y Alz , having z ≥ 26 at.-% Al. The limited occurrences of run-out lobes resulted from the surface tension effect that quickly reduced the driving force for additional run-out events. The interface reactions were controlled by a driving force that was an expressed function of filler metal composition (Ag-xAl) and brazing temperature, as opposed to simply thermally activated rate kinetics. The differences of reaction layer composition and thickness confirmed that the interface reactions differed between the braze joint and sessile drop configurations. Collectively, the findings from the Parts 1–4 investigations concluded that the most-effective means to mitigate run-out is to place a barrier coating on the Kovar base material that will prevent formation of the (Fe, Ni, Co)y Alz reaction layer.


Author(s):  
Douglas Neves Garcia ◽  
Daniel Dominices Baía Gomes de Souza ◽  
Carlos Alberto Mendes da Mota ◽  
Valtair Antônio Ferraresi

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Dhanesh G Mohan ◽  
ChuanSong Wu

AbstractFriction Stir Welding (FSW) is the most promising solid-state metals joining method introduced in this era. Compared to the conventional fusion welding methods, this FSW can produce joints with higher mechanical and metallurgical properties. Formerly, FSW was adopted for low melting metals like aluminum alloys. In recent years it has made significant progress in friction stir welding of steels since unfavourable phase transformations occurred in welds due to the melting of the parent and filler metals in fusion welding can be eliminated. The main advantage of FSW over traditional fusion welding is the reduction in the heat-affected zone (HAZ), and the joints exhibit excellent mechanical and corrosion resistance properties. This article reviews the progress in the relevant issues such as the FSW tool materials and tool profiles for joining steels, microstructure and mechanical properties of steels joints, special problems in joining dissimilar steels. Moreover, in-situ heating sources was used to overcome the main limitations in FSW of hard metals and their alloys, i.e., tool damages and insufficient heat generation. Different in-situ heating sources like laser, induction heat, gas tungsten arc welding assisted FSW for various types of steels are introduced in this review. On the basis of the up-to-date status, some problems that need further investigation are put forward.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1403
Author(s):  
Qingcheng Luo ◽  
Songbai Xue ◽  
Jie Wu

Ag-based and Cu-based brazing filler metals, which are the most widely used brazing materials in industrial manufacturing, have excellent gap-filling properties and can braze almost all the metallic materials and their alloys, except for the low-melting-point metals such as Al and Mg. Therefore, Ag-based and Cu-based brazing filler metals have attracted great attention. In this review, three series of typical Ag-based filler metals: the Ag-Cu, Ag-Cu-Zn, and Ag-Cu-Zn-Sn alloys; and three series of Cu-based filler metals: the crystalline and amorphous Cu-P filler metals, as well as the Cu-Zn filler metals, were chosen as the representatives. The latest research progress on Sn-containing Ag-based and Cu-based brazing filler metals is summarized, and the influences of Sn on the melting characteristics, wettability, microstructure, and mechanical properties of the selected filler metals are analyzed. Based on these, the problems and corresponding solutions in the investigation and application of the Sn-containing Ag-based and Cu-based filler metals are put forward, and the research and development trends of these filler metals are proposed.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1045
Author(s):  
Bo Wang ◽  
Weimin Long ◽  
Mengfan Wang ◽  
Pengzhi Yin ◽  
Shaokang Guan ◽  
...  

Brazing was one of the earliest material-joining methods to be invented and widely used by humans. In the past 30 years, the technology and materials employed for brazing have developed rapidly and continuously. With the rise of the international new industrial revolution, the manufacturing industry is moving towards diversification, and brazing filler metals are also evolving in the direction of eco-friendliness, compounding and diversification. In the “carbon neutral” environment of 2021, green composite brazing materials will become mainstream. In this paper, the classification and characteristics of flux-containing brazing materials are summarized, and the preparation technology, composition design and typical application of composite brazing materials such as flux-cored brazing filler metal, flux-coated brazing filler metal and powder metallurgy brazing filler metal are analyzed. The article highlights the problems encountered in the research and development of composite brazing materials and proposes future development directions, such as with low-silver and cadmium-free brazing filler metals, the creation of new powder brazing filler metal-forming technology and improvements to the quality of brazing filler metals by shape control and performance optimization, to accelerate the process of brazing automation.


Sign in / Sign up

Export Citation Format

Share Document