Pavement Distress Under Accelerated Trafficking

1998 ◽  
Vol 1639 (1) ◽  
pp. 120-129
Author(s):  
Dar-Hao Chen

A test pad was closely monitored for a 6-month period, with 640,000 axle load repetitions applied to the test pavement. The load was applied by the Texas Mobile Load Simulator, a full-scale accelerated loading device. Pavement performance data, such as rutting and cracking, were collected at intervals of 0; 2,500; 5,000; 10,000; 20,000; 40,000; 80,000; 160,000; 320,000; and 640,000 axle repetitions. Falling weight deflectometer (FWD) tests were performed at these same data collection intervals to characterize the structural capacity of the pavement system. Although there is a trend indicating that locations with higher FWD deflection result in higher rutting, a unique relation to predict rutting accurately from the surface deflection alone was not found in the study. The back-calculated asphalt concrete pavement moduli were reduced by 50 percent of the original value at the end of 320,000 repetitions. However, the test was not terminated until 640,000 repetitions, when moduli were reduced to 40 percent of the original values. Both FWD deflection and percent of cracked area share the same trend; the left wheelpath had higher initial FWD deflections and later yielded a higher percentage of cracked area. Approximately 50 percent of the wheelpath area was cracked at the end of 80,000 repetitions, as measured by counting the number of cracked squares on a 100 mm by 100 mm grid. However, most of the cracks were hairline cracks. The percentage of cracked area is strongly related to the grid size used. A grid size of 100 mm by 100 mm has been recommended by other researchers and was adopted in this study. Eighty-five percent and 90 percent of the area in the wheelpaths was cracked at the end of 320,000 and 640,000 repetitions, respectively. These numbers are higher than those adopted by the Asphalt Institute, which defines failure as 45 percent cracking in the wheelpath.

Author(s):  
Dar-Hao Chen ◽  
Ken Fults ◽  
Mike Murphy

The pavement behavior under 630,000 axle repetitions from the Texas Mobile Load Simulator (TxMLS) was studied. During the course of TxMLS testing, nondestructive testing and in situ instrumentation (pressure cell, strain gauge, and multidepth deflectometers) were applied to monitor and assess the pavement condition. In addition, pavement distress data, such as measurements of permanent deformation, rutting, and cracking, were collected and analyzed. At the end of 630,000 axle repetitions, the maximum permanent deformation was approximately 22 mm. A forensic study was then performed by cutting a 1.8-m by 3-m trench in the middle of the test pad and three nuclear density gauge (NDG) tests were performed on top of each layer to determine the densities and moisture contents. It was found that the lime-treated gravel base (LTB) layer contributed the most to rutting. The axle-load applications increased the density of the LTB layer in the pit area, which caused the pavement structure to settle and consolidate. The highest rate of rutting was observed at the early stages of loading, between 10,000 and 20,000 axle repetitions. The higher deflections on the left wheelpath as observed from falling weight deflectometer data were probably due to the higher moisture content and the instrumented pit. NDG data showed that the LTB, lime-stabilized subgrade (LTS), and subgrade in the left wheelpath all had higher moisture contents than those in the right wheelpath.


2018 ◽  
Vol 13 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Can CHEN ◽  
Shibin LIN ◽  
Ronald Christopher WILLIAMS ◽  
Jeramy Curtis ASHLOCK

Reflective cracking is a common type of pavement distress, which manifests as cracks in an underlying layer propagating through to the surface of a pavement structure. To minimize reflective cracking of asphalt layers in composite pavements, four treatments are commonly used: standard/full rubblization, modified rubblization, crack and seat, and rock interlayer. The four types of treatment were evaluated to determine their effectiveness in mitigating reflective cracking via non-destructive Falling Weight Deflectometer tests and Surface Wave Method tests to measure layer modulus, along with field pavement performance surveys. It is found that moduli measurements from Surface Wave Method tests have reduced uncertainty comparing to those from Falling Weight Deflectometer tests, (2) the moduli of thin rock interlayers were captured by Surface Wave Method, but missed by Falling Weight Deflectometer. In addition, the Surface Wave Method results show that (1) crack and seat treatments provide the highest moduli, followed by modified rubblization, and (2) standard rubblization and rock interlayers provide moduli that are slightly lower than the other two treatments. Pavement performance survey was also conducted concurrently with the in-situ modulus tests. Based on the results of this study, modified rubblization and rock interlayer treatments are recommended for mitigation of reflective cracking.


Author(s):  
J. Groenendijk ◽  
C. H. Vogelzang ◽  
A. Miradi ◽  
A. A. A. Molenaar ◽  
L. J. M. Dohmen

Two full-depth gravel asphalt concrete (AC) pavements of 0.15- and 0.08-m thickness on a sand subgrade were loaded with 4 million and 0.65 million repetitions of a 75-kN super-single wheel load using the linear tracking device (LINTRACK), a heavy-traffic simulator. Frequent measurements of asphalt strains, temperatures, rutting, cracking, and falling weight deflectometer (FWD) were made. The data analysis of the rutting measurements indicates that all rutting could be ascribed to subgrade deformation (secondary rutting). No evidence was found of shear deformation within the asphalt layer (primary rutting). The data analysis also indicates that the observed rutting performance of the LINTRACK test sections (to a maximum rut depth of 18 mm) coincides closely with the average criterion from the Shell Pavement Design Manual, which relates subgrade strain to allowable number of strain repetitions.


2020 ◽  
Vol 47 (7) ◽  
pp. 846-855
Author(s):  
Dandan Cao ◽  
Changjun Zhou ◽  
Yanqing Zhao ◽  
Guozhi Fu ◽  
Wanqiu Liu

In this study, the field falling weight deflectometer (FWD) data for asphalt pavement with various base types were backcalculated through dynamic and static backcalculation approaches, and the effectiveness of backcalculation approaches was studied. Asphalt concrete (AC) was treated as a viscoelastic material and the complex modulus was obtained using the dynamic approach. The dynamic modulus at a fixed frequency was computed for comparison purposes. The coefficient of variance and the compensating layer effect were assumed as two characteristics for the effectiveness of backcalculation approaches. The results show that the layer property from the dynamic backcalculation approach for different stations were more consistent and showed smaller coefficient of variance, which were more appropriate for the characterization pavement behavior. The elastic moduli from the static approach were more variable and exhibited a compensating layer effect in which a portion of the modulus of one layer was backcalculated into other layers. The dynamic approach is more effective than static approaches in backcalculation of layer properties.


Author(s):  
Stephen Sebesta

Shrinkage cracking occurs in cement-treated bases because of desiccation and cement hydration; eventually these cracks start to reflect through the pavement surfacing. Although initially considered cosmetic, these cracks open the pavement to water infiltration and increase the likelihood of accelerated pavement distress. Numerous options exist for minimizing the amount of reflective cracks that appear; microcracking is a promising approach. The microcracking concept can be defined as the application of several vibratory roller passes to the cement-treated base at a short curing stage, typically after 1 to 3 days, to create a fine network of cracks. In addition to the microcracked test sites, the contractor constructed moist-cured, dry-cured, and asphalt membrane–cured sites for comparison. Researchers used falling weight deflectometer (FWD) tests to control the microcracking process, periodic crack surveys to monitor crack performance, and FWD tests through time to track base moduli. Microcracking proved quite effective at reducing shrinkage cracking problems in the base; applying the procedure with three passes of the roller after 2 to 3 days of curing resulted in the best performance. In addition, researchers observed that, without microcracking, excessively high cement contents resulted in problematic cracking in the base even if they were cured according to good construction practice. Microcracking did not result in pavement damage or diminished inservice modulus; thus, microcracking should be considered a viable and inexpensive option to incorporate shrinkage crack control into the construction of cement-treated bases.


2016 ◽  
Vol 9 (2) ◽  
pp. 263-274
Author(s):  
L. S. Salles ◽  
J. T. Balbo

ABSTRACT Four continuously reinforced concrete pavement (CRCP) sections were built at the University of São Paulo campus in order to analyze the pavement performance in a tropical environment. The sections short length coupled with particular project aspects made the experimental CRCP cracking be different from the traditional CRCP one. After three years of construction, a series of nondestructive testing were performed - Falling Weight Deflectometer (FWD) loadings - to verify and to parameterize the pavement structural condition based on two main properties: the elasticity modulus of concrete (E) and the modulus of subgrade reaction (k). These properties estimation was obtained through the matching process between real and EverFE simulated basins with the load at the slab center, between two consecutive cracks. The backcalculation results show that the lack of anchorage at the sections end decreases the E and k values and that the longitudinal reinforcement percentage provides additional stiffness to the pavement. Additionally, FWD loadings tangential to the cracks allowed the load transfer efficiency (LTE) estimation determination across cracks. The LTE resulted in values above 90 % for all cracks.


Sign in / Sign up

Export Citation Format

Share Document