Network-Level Railway Track Maintenance Management Model

Author(s):  
M. P. N. Burrow ◽  
S. Naito ◽  
H. T. Evdorides
Author(s):  
Mahdieh Sedghi ◽  
Osmo Kauppila ◽  
Bjarne Bergquist ◽  
Erik Vanhatalo ◽  
Murat Kulahci

Author(s):  
Korntham Sathirakul ◽  
Suradate Suratisak ◽  
Jatesada Borsub ◽  
Sompat Praeknokkeaw

2022 ◽  
pp. 1-29
Author(s):  
Carlos A. Parra ◽  
Adolfo Crespo Márquez ◽  
Vicente González-Prida ◽  
Antonio Sola Rosique ◽  
Juan F. Gómez ◽  
...  

The chapter explains in detail the maintenance management model (MMM) taken as a reference for the development of the book. The chapter is based on the eight phases of the MMM. The first three blocks determine the effectiveness of the management; the following blocks assure the same efficiency and continuous improvement in the following way: Blocks 4 and 5 include actions for the planning and scheduling of maintenance, including, of course, the capacity of planning of department of maintenance. Blocks 6 and 7 are dedicated to the evaluation and control of the maintenance and the cost of assets throughout their life cycle. This chapter of introduction briefly summarizes the process and the reference frame necessary for the implementation of the MMM. This chapter also presents the relationship between the eight phases of the maintenance management model proposed and the general requirements of the asset management standard ISO 55000 to show how the gradual implementation of the MMM largely covers the requirements of the standard ISO 55000.


2020 ◽  
Vol 10 (14) ◽  
pp. 4717
Author(s):  
Filip Lisowski ◽  
Edward Lisowski

Railway track maintenance services aim to shorten the time of removing failures on the railways. One of the most important element that shorten the repair time is the quick access to the failure site with an appropriate equipment. The use of road-rail vehicles is becoming increasingly important in this field. In this type of constructions, it is possible to use proven road vehicles such as self-propelled machines or trucks running on wheels with tires. Equipping these vehicles with a parallel rail drive system allows for quick access to the failure site using both roads and railways. Steel rail wheels of road-rail vehicles are designed for specific applications. Since the total weight of vehicle is a crucial parameter for roadworthiness, the effort is made to minimize the mass of rail wheels. The wheel under consideration is mounted directly on the hydraulic motor. This method of assembly is structurally convenient, as no shafts or intermediate couplings are required. On the other hand, it results in strict requirements for the wheel geometry and can cause significant stress concentration. Therefore, the problem of wheel geometry optimization is discussed. Consideration is given to the use of ER8 steel for railway application and 42CrMo4 high-strength steel. Finite element analysis within Ansys software and various optimization tools and methods, such as random tool, subproblem approximation method and first-order method are applied. The obtained results allow to minimize the rail wheel mass with respect to the used material. Moreover, computational demands and methods leading to the best results are compared.


Sign in / Sign up

Export Citation Format

Share Document