Evaluating the Operational Impact of Left-Turn Waiting Areas at Signalized Intersections in China

Author(s):  
Zhao Yang ◽  
Pan Liu ◽  
Zong Z. Tian ◽  
Wei Wang
Author(s):  
Abishai Polus ◽  
Ronen Cohen

High volumes at urban and suburban intersections may cause considerable delay to vehicles during the peak periods, particularly when the left-turning volume is combined with high through volumes in both directions. The operational impact resulting from converting a major conventional cross intersection into two smaller signalized intersections is analyzed and evaluated. The two intersections are constructed along the minor road, allowing the left-turn movement from the major road to operate simultaneously with the through movement and to be stored in more lanes on the minor road. The general advantages and disadvantages of a split intersection are discussed. It is shown that the split increases capacity because of better efficiency resulting from ( a) the smaller geometry of each intersection, which reduces “lost time,” compared to the geometry of a single larger intersection, ( b) a reduction in the number of signal phases from four to three and an increase in the effective green time for all movements, and ( c) an increase in the number of lanes available for storage of the left-turn movement. It is also shown that delay is reduced, particularly when the flow is close to saturation. The impact of the cycle length and the left-turn volume is evaluated. Further analysis ascertains the minimum distance between the two smaller intersections under two scenarios: ( a) a minimum distance for storage of the left-turn movement and ( b) a longer distance to reduce delays and to allow for the simultaneous start of the green time for the through movements in the two intersections. It is concluded that the longer distance is feasible mainly for new intersections in suburban areas where the right of way is available.


Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


Author(s):  
Andrew Raessler ◽  
Jidong J. Yang

A new methodology is proposed to establish practical guidelines for four incremental left-turn treatments: ( a) permissive single left-turn lane, ( b) protected–permissive single left-turn lane, ( c) protected dual left-turn lanes with equal lane use, and ( d) protected dual left-turn lanes with unequal lane use. Decision boundaries were derived from the equilibrium at which the delays of two incremental treatments were equal. The benefits and costs associated with different left-turn treatments—including safety impact and construction and maintenance costs—also were considered. These benefits and costs effectually shift the boundary curves for more realistic decision making.


Author(s):  
Daniel J. Cook

Along urban and suburban arterials, closely-spaced signalized intersections are commonly used to provide access to adjacent commercial developments. Often, these signalized intersections are designed to provide full access to developments on both sides of the arterial and permit through, left-turn, and right-turn movements from every intersection approach. Traffic signal timing is optimized to reduce vehicle delay or provide progression to vehicles on the arterial, or both. However, meeting both of these criteria can be cumbersome, if not impossible, under high-demand situations. This research proposes a new design that consolidates common movements at three consecutive signalized intersections into strategic fixed locations along the arterial. The consolidation of common movements allows the intersections to cycle between only two critical phases, which, in turn, promotes shorter cycle lengths, lower delay, and better progression. This research tested the consolidated intersection concept by modeling a real-world site in microsimulation software and obtaining values for delay and travel time for multiple vehicle paths along the corridor and adjacent commercial developments in both existing and proposed conditions. With the exception of unsignalized right turns at the periphery of the study area, all non-displaced routes showed a reduction in travel time and delay. Additional research is needed to understand how additional travel through the commercial developments adjacent to the arterial may effect travel time and delay. Other expected benefits of the proposed design include a major reduction in conflict points, shorter pedestrian crossing and wait times, and the opportunity to provide pedestrian refuge areas in the median.


2019 ◽  
Vol 145 (6) ◽  
pp. 04019020 ◽  
Author(s):  
Pan Liu ◽  
Jiaming Wu ◽  
Huaguo Zhou ◽  
Jie Bao ◽  
Zhao Yang

Sign in / Sign up

Export Citation Format

Share Document