Evaluating the Effect of Concrete Slab Curling on Joint Load Transfer Responses

Author(s):  
Christopher R. Byrum ◽  
Dan Ye
Author(s):  
William G. Davids

Issues related to the finite element modeling of base and subgrade materials under jointed plain concrete pavements are examined. The threedimensional finite element program EverFE, developed in conjunction with the Washington State Department of Transportation, was employed for the analyses. The relevant modeling capabilities of EverFE are detailed, including the ability to model multiple foundation layers, the incorporation of loss of contact between slab and base, and the efficient iterative solution strategies that make large three-dimensional finite element analyses possible on desktop computers. The results of parametric studies examining the effects of foundation type (layered elastic and dense liquid) and properties on the response of jointed plain concrete pavements subjected to axle and thermal loads are presented. Special attention is paid to the interactions between joint load transfer effectiveness and foundation type, and joint load transfer is shown to change significantly with different foundation models and properties. A consideration of simultaneous thermal and axle loadings indicates that the effect of foundation type and properties on critical slab stresses caused by edge loading and a positive temperature gradient is relatively small. However, the slab response is quite sensitive to foundation type for a combined negative temperature gradient and corner loading. On the basis of these results, use of an equivalent dense liquid foundation modulus in mechanistic rigid pavement analysis or design is not recommended when stiff base layers are present.


2013 ◽  
Vol 857 ◽  
pp. 222-226
Author(s):  
Rong Guo Hou ◽  
Kai Min Niu

The stress concentration will appear in cement concrete around joint dowel set in contraction joint of cement concrete pavement with repeated loads. And concrete around joint dowel will damage gradually.In this paper, the stress of concrete around joint dowel and deflection of concrete slab are analyzed when joint dowel loosing. It is indicated that the shear stress is key to damage of concrete around joint dowel. when the loosing width reaches certain extent. With loosing width increasing, load transfer capacity will decrease gradually. And it is shown that the load transfer capability will lower rapidly when the loosing width comes in 4cm.


2012 ◽  
Vol 178-181 ◽  
pp. 1152-1155 ◽  
Author(s):  
Luo Ke Li ◽  
Yun Liang Li ◽  
Yi Qiu Tan ◽  
Zhong Jun Xue

In a jointed plain concrete pavements, the dowel bar system are used to provide lateral load transfer across transverse joint. Corrosion of commonly used steel dowel in engineering practice reduces their service life and costs considerable maintenance and repair spending for concrete pavements. The objective of this study focus primarily on the performance of none eroded GFRP dowel on LTE( load transfer efficiency) with the help of a three-dimensional finite-element model. The amount of LTE can be obtained directly from comparing the maximum deflection of the concrete slab and the level tensile stress under the concrete slab. According to the finite element results, the larger-diameter GFRP dowel are found to perform the best in this study.


1997 ◽  
Vol 1574 (1) ◽  
pp. 99-102 ◽  
Author(s):  
Lawrence W. Cole ◽  
Michael J. Hall

The design and construction of portland cement concrete pavement involves the selection, specification, and construction of a number of concrete pavement features. Concrete pavement features can significantly affect pavement construction costs. In this study, the relative effect on pavement construction cost of several concrete pavement features was investigated, including concrete pavement thickness, foundation, shoulders, cross-section thickness variation (trapezoidal section), joint spacing, transverse joint load transfer, and transverse joint sealant. Careful consideration and study should be given the cost effects of various features when designing and specifying concrete pavement. The ideal pavement design is one that selects the least costly pavement section that will perform to the expected level over the life of the facility. The least costly pavement section is that with the least life-cycle costs.


Author(s):  
William G. Davids ◽  
Zongmu Wang ◽  
George Turkiyyah ◽  
Joe P. Mahoney ◽  
David Bush

The features and concepts underlying EverFE2.2, a freely available three-dimensional finite element program for the analysis of jointed plain concrete pavements, are detailed. The functionality of EverFE has been greatly extended since its original release: multiple tied slab or shoulder units can be modeled, dowel misalignment or mislocation can be specified per dowel, nonlinear thermal or shrinkage gradients can be treated, and nonlinear horizontal shear stress transfer between the slabs and base can be simulated. Improvements have been made to the user interface, including easier load creation, user-specified mesh refinement, and expanded visualization capabilities. These new features are detailed, and the concepts behind the implementation of EverFE2.2 are explained. In addition, the results of two parametric studies are reported. The first study considers the effects of dowel locking and slab-base shear transfer and demonstrates that these factors can significantly affect the stresses in slabs subjected to both uniform shrinkage and thermal gradients. The second study examines transverse joint mislocation and dowel looseness on joint load transfer. As expected, joint load transfer is greatly reduced by dowel looseness. However, while transverse joint mislocation can significantly reduce peak dowel shears, it has relatively little effect on total load transferred across the joint for the models considered.


Author(s):  
Louis D. Haussmann ◽  
Erol Tutumluer ◽  
Ernest J. Barenberg

Elastic layered programs (ELPs) are currently being used in mechanistic-based pavement design procedures for the analysis of jointed portland cement concrete pavements. Corrections must be made to stresses obtained from ELP solutions to account for the effects of finite slab size, load location on the slab, and load transfer efficiency of the joints. A preliminary artificial neural network (ANN) model is trained and used as a tool to predict the results of a finite-element analysis program for a standard pavement section. Under identical loading conditions, the trained neural network produces stresses within 1.2 percent of those obtained from finite-element analyses. The trained ANN model is found to be very effective for correcting ELP stresses, practically in the blink of an eye, with no requirements of complicated finite-element inputs. The preliminary ANN algorithm is currently being expanded to handle more general input conditions covering a wide range of slab sizes, slab thicknesses, subgrade supports, and loading conditions. Design curves created from these ANN algorithms will eventually enable pavement engineers to easily incorporate sophisticated state-of-the-art technology into routine practical design.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1108-1115
Author(s):  
Guo Xi Liang ◽  
Zhi Gao Liao ◽  
Bo Li ◽  
Liang Zhou ◽  
Er Hao Su ◽  
...  

Joint load transfer ability is the key part of the analysis of the rigid pavement structure. This paper is focused on the load transfer efficiency at joints of monolithic track-bed under new city tramcar loading. Based on the general finite element analysis software ABAQUS, the relationship between the modulus of virtual materials in virtual material layer method and joint load transfer ability is analyzed. Meanwhile, bending stress and deflection for monolithic track-bed structure on edge loading case are calculated under different thickness of the pavement structure.


Sign in / Sign up

Export Citation Format

Share Document