scholarly journals The KLP+ ("hat") trap, a non-sticky, attractant baited trap of novel design for catching the western corn rootworm (Diabrotiea v. virgifera) and cabbage flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae)

Author(s):  
M. Tóth ◽  
É. Csonka ◽  
I. Szarukán ◽  
G. Vörös ◽  
L. Furlan ◽  
...  

In the course of research aimed at the development of non-sticky, easy-to-use alternative trap designs for the capture of selected beetle pests, a newly designed "hat" trap, codenamed CSALOMON® KLP+, was compared with conventional trap designs. In the case of the western corn rootworm (WCR) Diabrotica v. virgifera (Coleoptera, Chrysomelidae) the new KLP+ traps baited with pheromonal or floral baits were equally sensitive as the former PAL or PALs sticky "cloak" designs, but the KLP+ traps catch capacity and selectivity was much higher. When baited with the floral WCR bait, the KLP+ trap proved to be more sensitive in capturing female \VCR, than the former sticky PALs trap design. In capturing cabbage flea beetles (Phyllotreta spp., Coleoptera, Chrysomelidae), the new KLP+ trap design baited with allyl isothiocyanate performed better than the previously used VARL+ funnel traps in all respects studied. In conclusion, the new KLP+ trap design, baited with the respective attractants, appears to be advantageous to use for the trapping of both WCR and cabbage flea beetles, and can be recommended for use as a trapping tool in plant protection practice in the detection and monitoring of these pest Coleoptera.

Author(s):  
P. Benedek ◽  
F. Bakcsa ◽  
M. Tóth ◽  
E. Csonka

A new trapping concept has been proposed based on a volatile compound, allyl isothyocianate, known to be attractant to some of these insects for a long time. (l) The first question was whether this compound is effectively attractive to all flea beetle species attacking cabbage under our conditions? Field experiments were made at different localities with non-sticky baited traps early and late spring. Eleven Phyllotreta species attacking cabbages were captured at baited traps most of them were first observed at this bait. So the bait has proved to be sufficient for use for trapping purposes effectively. Based on these findings a second question arose whether the captured samples reflected the specific composition of natural flea beetle populations at trapping localities? To reply the question field samples were taken at four different kinds of cabbage crops and at a fallow ground in the close vicinity by a manual sampler device suitable to detect the local composition of flea beetles and trapping was made parallel with baited and unbaited traps from early spring to early autumn. No significant differences were found between the specific structures of Phyllotreta assemblages sampled with the different methods applied. This means baited traps reflected the specific composition of local Phyllotreta populations fairly well. Thirdly, the most effective trap design was searched for. Some sticky and non-sticky trap designs which had been developed to capture other insects were compared. The tested sticky and funnel trap designs baited with allyl isothiocyanate captured large numbers of flea beetles attacking cabbages. Results showed that non-sticky funnel traps were more effective than sticky delta traps. Accordingly, non-sticky funnel trap designs can advantageously be used and could possibly be recommended in plant protection practice to monitor flea beetles attacking cabbages as their catching capacity is considerably greater than that of the delta type and additionally captured beetles are much cleaner, more intact and consequently their identification is much easier.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1984
Author(s):  
Antoine Pasquier ◽  
Lucie S. Monticelli ◽  
Adeline Moreau ◽  
Benjamin Kaltenbach ◽  
Candice Chabot ◽  
...  

Western Corn Rootworm is a pest of maize that mostly damages roots. Many alternative strategies have been explored to control this species, with little or non-lasting success, and it remains a threat to maize production worldwide. Gaeolaelaps aculeifer, a soil-dwelling predatory mite that inhabits the first few centimeters of the soil, showed high predatory potential against WCR larvae in the laboratory. In this study, we explored the efficiency of G. aculeifer against WCR in more realistic contexts. First, we infested maize plants isolated in pots in a greenhouse with WCR, and tested the impact of different densities of mites on plant protection. Using standard indicators of WCR population presence and impact, we confirmed that G. aculeifer has the potential to control WCR at densities starting from 100 mites/plant. Then, considering that the release of a large amount of biocontrol agents at WCR emergence might be too costly and constraining for large-scale implementation, we tested the efficiency of a predator-in-first strategy in a maize field infested by WCR. The goal was to introduce fewer G. aculeifer combined with Aleuroglyphus ovatus eggs as an alternative food source in order to let the mite population grow in the field and reach sufficient density at the critical stage for protection. This strategy gave comparable results to pesticide on all indicators examined in our field trial, highlighting the potential to sustainably manage this pest.


Sign in / Sign up

Export Citation Format

Share Document