scholarly journals THE HEAT PUMP SYSTEM FOR VENTILATION AND AIR CONDITIONING INSIDE THE PRODUCTION AREA WITH AN EXCESSIVE INTERNAL MOISTURE GENERATION

2020 ◽  
Vol 17 (2) ◽  
pp. 78-86
Author(s):  
M.K. Bezrodny ◽  

The paper studies application feasibility and energy efficiency of the ventilation and air conditioning heat pump system for maintaining comfort conditions inside the production area with an excessive internal moisture generation during the warm season. In this regard, a thermodynamic analysis of a heat pump system with a partial exhaust air recirculation and a variable ratio of fresh outside air was carried out. Numerical analysis was then done to estimate the influence of changes in the environment temperature and relative humidity and the characteristics of the ventilation and air conditioning object on the system parameters. This allowed to determine potential capabilities of this system to maintain comfortable conditions in the production area. It was also shown that the required additional cooling of the supply air at the entrance to the premise for air conditioning demands can be determined by a simple coefficient and its calculation method is provided in the article. The heat pump system of temperature and humidity maintenance has the highest energy efficiency in the zone of relatively low environment temperatures and largely depends on the relative humidity of the outside air. This suggests that the studied system is suitable for application in countries with temperate continental climate.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Jia ◽  
Xuan Zhou ◽  
Wei Feng ◽  
Yuanda Cheng ◽  
Qi Tian ◽  
...  

The simultaneous need for energy efficiency and indoor comfort may not be met by existing air source heat pump (ASHP) technology. The novelty of this study lies in the use of a new gravity-driven radiator as the indoor heating terminal of ASHPs, aiming to provide an acceptable indoor comfort with improved energy efficiency. To confirm and quantify the performance improvement due to the proposed system retrofit, a field test was conducted to examine the system performance under real conditions. In the tests, measurements were made on the refrigerant- and air-side of the system to characterize its operational characteristics. Results showed that the proposed radiator has a rapid thermal response, which ensures a fast heat output from the system. The proposed system can create a stable and uniform indoor environment with a measured air diffusion performance index of 80%. The energy efficiency of the proposed system was also assessed based on the test data. It was found that the system’s first law efficiency is 42.5% higher than the hydraulic-based ASHP system. In terms of the second law efficiency, the compressor contributes the most to the overall system exergy loss. The exergy efficiency of the proposed system increases with the outdoor temperature and varies between 35.02 and 38.93% in the test period. The research results and the analysis methodology reported in this study will be useful for promoting the technology in search of energy efficiency improvement in residential and commercial buildings.


2021 ◽  
Vol 121 ◽  
pp. 95-104
Author(s):  
Binbin Yu ◽  
Hongsheng Ouyang ◽  
Junye SHI ◽  
Wuchan LIU ◽  
Jiangping CHEN

2013 ◽  
Vol 448-453 ◽  
pp. 2839-2842 ◽  
Author(s):  
Yun Zhun Fu ◽  
Xin Hui Du ◽  
Xu Zhang

Pile foundation thermal response test method was adopted to measure the heat transfer capacity of the pile foundation U-pipe heat exchanger. The heat pump system of pile foundation buried pipe was designed. BIN method was adopted to calculate the annual dynamic load of office in Shanghai and annual energy consumption, and its energy-saving effect was determined by comparing with the air-cooled heat pump air conditioning system. Finally, annual cost method was employed to study the investment and annual operating expenses of pile foundation buried pipe heat pump air conditioner systems, and their economy, advantages and disadvantages by comparing with those of the air-cooled heat pump air conditioning system were analyzed.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012077
Author(s):  
Xiaoming Zhang ◽  
Qiang Wang ◽  
Qiujin Sun ◽  
Mingyu Shao

Abstract There have been few practical applications of solar coupled groundwater source heat pump (GWHP) systems in large public buildings, and data on this technology are scarce. A solar coupled GWHP system was investigated in this study. The system uses an underground water source heat pump system for heating in winter, cooling in summer, and providing part of the domestic hot water, and it also uses a solar energy system to prepare domestic hot water. These two types of energy are complementary. The system was tested throughout the cooling season. This experiment ran from May 10, 2021, to September 10, 2021. The results show that the system can guarantee the indoor design temperature and the supply of domestic hot water. The solar water heating system operated for 1233 min in the summer; hot water (2334 m3) was prepared. During the summer, the average energy efficiency ratio of the GWHP unit was approximately 4.88. The energy efficiency ratio of the entire system was approximately 3.34. Such projects can play a key role in demonstrating this type of system.


Sign in / Sign up

Export Citation Format

Share Document