scholarly journals PRELIMINAR STUDY OF THE EFFECTS OF GAMMA RADIATIONS ON HUMAN RED BLOOD CELLS

Anales AFA ◽  
2020 ◽  
Vol 31 (2) ◽  
pp. 51-54
Author(s):  
E. Estrada ◽  
H. Castellini ◽  
A. Acosta ◽  
L. Di Tullio ◽  
J. Borraz ◽  
...  

In this study, the alterations in viscoelastic and aggregation parameters of red blood cells were analyzed for usual gamma irradiation procedures for transfusion purposes. In order to determine possible hemorheological changes that may affect the health of patients and their relationship with the biochemical changes observed, the blood samples were irradiated at different doses. The results show alterations in the erythrocyte aggregation time, in the membrane surface viscosity and in the size of the aggregates in the irradiated samples, suggesting that the damage produced by the ionizing radiation affects the physical properties of red blood cell membrane at different levels.

2011 ◽  
Vol 138 (4) ◽  
pp. 381-391 ◽  
Author(s):  
Teresa Tiffert ◽  
Virgilio L. Lew

Elevated intracellular calcium generates rapid, profound, and irreversible changes in the nucleotide metabolism of human red blood cells (RBCs), triggered by the adenosine triphosphatase (ATPase) activity of the powerful plasma membrane calcium pump (PMCA). In the absence of glycolytic substrates, Ca2+-induced nucleotide changes are thought to be determined by the interaction between PMCA ATPase, adenylate kinase, and AMP-deaminase enzymes, but the extent to which this three-enzyme system can account for the Ca2+-induced effects has not been investigated in detail before. Such a study requires the formulation of a model incorporating the known kinetics of the three-enzyme system and a direct comparison between its predictions and precise measurements of the Ca2+-induced nucleotide changes, a precision not available from earlier studies. Using state-of-the-art high-performance liquid chromatography, we measured the changes in the RBC contents of ATP, ADP, AMP, and IMP during the first 35 min after ionophore-induced pump-saturating Ca2+ loads in the absence of glycolytic substrates. Comparison between measured and model-predicted changes revealed that for good fits it was necessary to assume mean ATPase Vmax values much higher than those ever measured by PMCA-mediated Ca2+ extrusion. These results suggest that the local nucleotide concentrations generated by ATPase activity at the inner membrane surface differed substantially from those measured in bulk cell extracts, supporting previous evidence for the existence of a submembrane microdomain with a distinct nucleotide metabolism.


1990 ◽  
Vol 265 (27) ◽  
pp. 16035-16038 ◽  
Author(s):  
P Bütikofer ◽  
Z W Lin ◽  
D T Chiu ◽  
B Lubin ◽  
F A Kuypers

Sign in / Sign up

Export Citation Format

Share Document