Does sex ratio bias and sexual dimorphism occur in Lindera benzoin L. (Lauraceae) prior to fruit production? 1

2020 ◽  
Vol 147 (3) ◽  
Author(s):  
Martin L. Cipollini ◽  
N. Royce Dingley ◽  
Patrick Felch ◽  
Natalie J. Bailey ◽  
John Patten Moss ◽  
...  
2020 ◽  
Author(s):  
Fred E. Gouker ◽  
Craig H. Carlson ◽  
Junzhu Zou ◽  
Luke Evans ◽  
Chase R. Crowell ◽  
...  

AbstractPremiseSexual dimorphism in dioecious plant species is often not obvious or is absent. Dioecious species populations also often exhibit deviations from expected sex ratios. Previous studies on members of the Salicaceae family have shown strong, partial, and no sexual dimorphism. Some studies have shown sex-biased ratios in several Salix spp., however, S. purpurea has never been examined for evidence of sexual dimorphism or for the presence of sex-ratio bias, and therefore a comprehensive phenotypic study is needed to fill this knowledge gap.MethodsThis study examined a suite of morphological, phenological, physiological and wood composition traits from multi-environment and multi-year replicated field trials in a diversity panel of unrelated S. purpurea accessions and in full-sib F1 and F2 families produced through controlled cross pollinations to test for sexual dimorphism and sex ratio bias.Key ResultsSignificant evidence of sexual dimorphism was found in vegetative traits with greater means for many traits in male genotypes compared to females across three populations of S. purpurea, measured across multiple years that were highly predictive of biomass yield. Male plants exhibited greater nitrogen accumulation under fertilizer amendment as measured by SPAD in the diversity panel, and males showed greater susceptibility to fungal infection by Melampsora spp in the F2 family. There were also consistent female-biased sex ratios in both the F1 and F2 families.ConclusionsThese results provide the first evidence of sexual dimorphism in S. purpurea and also confirm the prevalence of female-biased sex ratios previously found in other Salix species.


Evolution ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 1049-1055 ◽  
Author(s):  
Steven Freedberg ◽  
Michael J. Wade

2018 ◽  
Vol 329 (6-7) ◽  
pp. 373-381 ◽  
Author(s):  
Nicola J. Nelson ◽  
Susan N. Keall ◽  
Jeanine M. Refsnider ◽  
Anna L. Carter

Evolution ◽  
1995 ◽  
Vol 49 (6) ◽  
pp. 1119-1124
Author(s):  
Peter D. Taylor
Keyword(s):  

2007 ◽  
Vol 6 (4) ◽  
pp. 431-456
Author(s):  
Adansi Amankwaa

AbstractThis article explores how family structure and domicility influences offspring sex ratio bias, specifically living arrangements of husband in polygynous unions. Data from three Ghana Demographic and Health Surveys were used to examine the relationship between family structure and offspring sex ratio at birth, something that previous studies have not been able to do. This study estimate models of sex ratio offspring if the wives live together with husband present and wives live in separate dwellings and are visited by husband in turn. The results suggest that within polygynous marriages there are more male births, especially when husbands reside in the same dwelling as wives, than when husbands reside in separate dwellings from their wives. The analyses show that offspring sex ratio is related to the structure of living arrangement of husbands in polygynous unions. Indeed, the findings suggest that living arrangements and family structure among humans are important factors in predicting offspring sex ratio bias.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Laurent Mottron ◽  
Pauline Duret ◽  
Sophia Mueller ◽  
Robert D Moore ◽  
Baudouin Forgeot d’Arc ◽  
...  

2014 ◽  
Vol 10 (5) ◽  
pp. 20140159 ◽  
Author(s):  
B. Vanthournout ◽  
K. Deswarte ◽  
H. Hammad ◽  
T. Bilde ◽  
B. Lambrecht ◽  
...  

Producing equal amounts of male and female offspring has long been considered an evolutionarily stable strategy. Nevertheless, exceptions to this general rule (i.e. male and female biases) are documented in many taxa, making sex allocation an important domain in current evolutionary biology research. Pinpointing the underlying mechanism of sex ratio bias is challenging owing to the multitude of potential sex ratio-biasing factors. In the dwarf spider, Oedothorax gibbosus , infection with the bacterial endosymbiont Wolbachia results in a female bias. However, pedigree analysis reveals that other factors influence sex ratio variation. In this paper, we investigate whether this additional variation can be explained by the unequal production of male- and female-determining sperm cells during sperm production. Using flow cytometry, we show that males produce equal amounts of male- and female-determining sperm cells; thus bias in sperm production does not contribute to the sex ratio bias observed in this species. This demonstrates that other factors such as parental genes suppressing endosymbiont effects and cryptic female choice might play a role in sex allocation in this species.


Sign in / Sign up

Export Citation Format

Share Document