salix purpurea
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Brennan Hyden ◽  
Craig H. Carlson ◽  
Fred E. Gouker ◽  
Jeremy Schmutz ◽  
Kerrie Barry ◽  
...  

AbstractSex dimorphism and gene expression were studied in developing catkins in 159 F2 individuals from the bioenergy crop Salix purpurea, and potential mechanisms and pathways for regulating sex development were explored. Differential expression, eQTL, bisulfite sequencing, and network analysis were used to characterize sex dimorphism, detect candidate master regulator genes, and identify pathways through which the sex determination region (SDR) may mediate sex dimorphism. Eleven genes are presented as candidates for master regulators of sex, supported by gene expression and network analyses. These include genes putatively involved in hormone signaling, epigenetic modification, and regulation of transcription. eQTL analysis revealed a suite of transcription factors and genes involved in secondary metabolism and floral development that were predicted to be under direct control of the sex determination region. Furthermore, data from bisulfite sequencing and small RNA sequencing revealed strong differences in expression between males and females that would implicate both of these processes in sex dimorphism pathways. These data indicate that the mechanism of sex determination in Salix purpurea is likely different from that observed in the related genus Populus. This further demonstrates the dynamic nature of SDRs in plants, which involves a multitude of mechanisms of sex determination and a high rate of turnover.


2021 ◽  
Vol 108 (8) ◽  
pp. 1374-1387
Author(s):  
Fred E. Gouker ◽  
Craig H. Carlson ◽  
Junzhu Zou ◽  
Luke Evans ◽  
Chase R. Crowell ◽  
...  

2021 ◽  
Vol 4 (2) ◽  
pp. 35-42
Author(s):  
Vladimir V. Golovko ◽  
Galina A. Zueva ◽  
Tatyana I. Kiseleva

A study is made on pollen emission into atmosphere of 21 species of anemophilous plants ( Betula divaricata Ledeb., Betula costata Trautv., Betula davurica Pall., Betula fruticosa Pall., Ulmus japonica (Rehd.)Sarg., Salix acutifolia Willd., Salix cinerea L., Salix purpurea L., Salix rosmarinifolia L., Alnus glutinosa (L.) Gaertn., Poa alpina L., Arrhenatherum elatius (L.) J. Presl & C. Presl, Briza maxima L., Deschampsia cespitosa (L.) P. Beauv., Urtica urens L., Carex altaica (Gorodkov) V.I. Krecz., Carex pallescens L., Carex flacca Schreb., Carex vesicaria L., Carex diluta M. Bieb., Plantago lanceolata L.), exposed by the Central Siberian Botanical Garden, SB RAS. These plants are widely spread over the territory of the Russian Federation and produce great amounts of allergenic pollen. The proportion of clusters of two or more pollen grains from the total number of pollen particles entering the atmosphere during the flowering periods of these plant species is estimated. It was shown that such clusters in significant quantities were formed in all series of experiments. At the same time, the proportion of pollen grains in their composition could reach 95% of the total number of pollen grains entering the atmosphere.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11076
Author(s):  
Jian Zhang ◽  
Shi zheng Shi ◽  
Yuna Jiang ◽  
Fei Zhong ◽  
Guoyuan Liu ◽  
...  

AP2/ERF transcription factors (TFs) play indispensable roles in plant growth, development, and especially in various abiotic stresses responses. The AP2/ERF TF family has been discovered and classified in more than 50 species. However, little is known about the AP2/ERF gene family of Chinese willow (Salix matsudana), which is a tetraploid ornamental tree species that is widely planted and is also considered as a species that can improve the soil salinity of coastal beaches. In this study, 364 AP2/ERF genes of Salix matsudana (SmAP2/ERF) were identified depending on the recently produced whole genome sequencing data of Salix matsudana. These genes were renamed according to the chromosomal location of the SmAP2/ERF genes. The SmAP2/ERF genes included three major subfamilies: AP2 (55 members), ERF (301 members), and RAV (six members) and two Soloist genes. Genes’ structure and conserved motifs were analyzed in SmAP2/ERF family members, and introns were not found in most genes of the ERF subfamily, some unique motifs were found to be important for the function of SmAP2/ERF genes. Syntenic relationships between the SmAP2/ERF genes and AP2/ERF genes from Populus trichocarpa and Salix purpurea showed that Salix matsudana is genetically more closely related to Populus trichocarpa than to Salix purpurea. Evolution analysis on paralog gene pairs suggested that progenitor of S. matsudana originated from hybridization between two different diploid salix germplasms and underwent genome duplication not more than 10 Mya. RNA sequencing results demonstrated the differential expression patterns of some SmAP2/ERF genes under salt stress and this information can help reveal the mechanism of salt tolerance regulation in Salix matsudana.


2021 ◽  
Author(s):  
Brennan Hyden ◽  
Craig H. Carlson ◽  
Fred E. Gouker ◽  
Jeremy Schmutz ◽  
Kerrie Barry ◽  
...  

AbstractSex dimorphism and gene expression were studied in developing catkins in 159 F2 individuals from the bioenergy crop Salix purpurea, and potential mechanisms and pathways for regulating sex development were explored. Differential expression, eQTL, bisulfite sequencing, and network analysis were used to characterize sex dimorphism, detect candidate master regulator genes, and identify pathways through which the sex determination region (SDR) may mediate sex dimorphism. Eleven genes are presented as candidates for master regulators of sex, supported by gene expression and network analyses. These include genes putatively involved in hormone signaling, epigenetic modification, and regulation of transcription. eQTL analysis revealed a suite of transcription factors and genes involved in secondary metabolism and floral development that were predicted to be under direct control of the sex determination region. Furthermore, data from bisulfite sequencing and small RNA sequencing revealed strong differences in expression between males and females that would implicate both of these processes in sex dimorphism pathways. These data indicate that the mechanism of sex determination in Salix purpurea is likely different from that observed in the related genus Populus. This further demonstrates the dynamic nature of SDRs in plants, which involves a multitude of mechanisms of sex determination and a high rate of turnover.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yahui Chen ◽  
Xuefeng Peng ◽  
Jijie Cui ◽  
Hongxia Zhang ◽  
Jiang Jiang ◽  
...  

Potassium (K+) plays key roles in plant growth and development. However, molecular mechanism studies of K+ nutrition in forest plants are largely rare. In plants, SKOR gene encodes for the outward rectifying Shaker-type K+ channel that is responsible for the long-distance transportation of K+ through xylem in roots. In this study, we determined a Shaker-type K+ channel gene in purple osier (Salix purpurea), designated as SpuSKOR, and determined its function using a patch clamp electrophysiological system. SpuSKOR was closely clustered with poplar PtrSKOR in the phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuSKOR was predominantly expressed in roots, and expression decreased under K+ depletion conditions. Patch clamp analysis via HEK293-T cells demonstrated that the activity of the SpuSKOR channel was activated when the cell membrane voltage reached at -10 mV, and the channel activity was enhanced along with the increase of membrane voltage. Outward currents were recorded and induced in response to the decrease of external K+ concentration. Our results indicate that SpuSKOR is a typical voltage dependent outwardly rectifying K+ channel in purple osier. This study provides theoretical basis for revealing the mechanism of K+ transport and distribution in woody plants.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 545
Author(s):  
Mateusz Ostolski ◽  
Marek Adamczak ◽  
Bartosz Brzozowski ◽  
Wiesław Wiczkowski

Renewable feedstock from perennial industrial crops, including those cultivated on marginal land in a short-rotation coppice system, could be an important contribution to the bioeconomy. The majority of data available on the topic are limited to the production of bioenergy from this type of biomass. According to the concept of bioeconomy, biomass-based bioproducts have priority over energy production. This paper characterizes the chemical composition and antioxidant activity of extracts from bark (b), wood (w) or a mixture of bark and wood (b + w) from Salix purpurea, Salix viminalis and Populus nigra obtained using supercritical carbon dioxide (scCO2), scCO2 and water (1%, w/w) or only water. Generally, a high concentration of polyphenols was obtained after extraction with scCO2 and water, while the lowest concentration was found in extracts obtained with scCO2. The highest concentration of polyphenols (p < 0.05) was obtained in an extract from P. nigra (b) (502.62 ± 9.86 mg GAE/g dry matter (d.m.)) after extraction with scCO2 and water, whereas the lowest polyphenol concentration was observed in an scCO2 extract from S. purpurea (b) (6.02 ± 0.13 mg GAE/g d.m.). The flavonoids were effectively separated by extraction with scCO2 (0.88–18.37 mg QE/g d.m.). A positive linear relationship between the antioxidant activity determined by DPPH and ABTS assays and the concentration of polyphenols was demonstrated, R2 = 0.8377 and R2 = 0.9568, respectively. It is most probable that the concentration of flavonoids, rather than the concentration of polyphenols, determines the chelating activity of Fe2+. The Fe2+-chelating activity of scCO2 extracts ranged from 75.11% (EC50 = 5.41 mg/cm3, S. purpurea, b + w) to 99.43% (EC50 = 0.85 mg/cm3, P. nigra, b + w). The lowest chelating activity was demonstrated by the extracts obtained with scCO2 and water (maximum 26.36%, S. purpurea, b + w). In extracts obtained with scCO2 and water, p-hydroxybenzoic acid (210–428 µg/g), p-coumaric acid (56–281 µg/g), saligenin (142–300 µg/g) and salicortin (16–164 µg/g) were the dominant polyphenols. All of these chemical compounds occurred mainly in the free form. The S. purpurea, S. viminalis and P. nigra biomass proved to be an attractive source of biologically active compounds for various possible applications in food, drugs or cosmetics. These compounds could be extracted using an environmentally friendly method with scCO2 and water as a co-solvent.


Author(s):  
Satish Kulasekaran ◽  
Sergio Cerezo-Medina ◽  
Claudia Harflett ◽  
Charlotte Lomax ◽  
Femke de Jong ◽  
...  

Abstract The salicinoids are phenolic glycosides that are characteristic secondary metabolites of the Salicaceae, particularly willows and poplars. Despite the well-known pharmacology of salicin, that led to the development of aspirin &gt;100 years ago, the biosynthetic pathways leading to salicinoids have yet to be defined. Here, we describe the identification, cloning, and biochemical characterization of SpUGT71L2 and SpUGT71L3—isozymic glycosyltransferases from Salix purpurea—that function in the glucosylation of ortho-substituted phenols. The best substrate in vitro was salicyl-7-benzoate. Its product, salicyl-7-benzoate glucoside, was shown to be endogenous in poplar and willow. Together they are inferred to be early intermediates in the biosynthesis of salicortin and related metabolites in planta. The role of this UDP-glycosyltransferase was confirmed via the metabolomic analysis of transgenic plants produced by RNAi knockdown of the poplar orthologue (UGT71L1) in the hybrid clone Populus tremula×P. alba, INRA 717-1B4.


2020 ◽  
Vol 155 ◽  
pp. 311-320
Author(s):  
Angela Köhler ◽  
Nadja Förster ◽  
Matthias Zander ◽  
Christian Ulrichs

Sign in / Sign up

Export Citation Format

Share Document