The Behaviour and Vocalisations of Captive Geoffroy's Horseshoe Bats, Rhinolophus clivosus (Chiroptera: Rhinolophidae)

2019 ◽  
Vol 20 (2) ◽  
pp. 439
Author(s):  
Hana Petersen ◽  
Nikita Finger ◽  
Anna Bastian ◽  
David Jacobs
Keyword(s):  
2003 ◽  
Vol 189 (6) ◽  
pp. 435-446 ◽  
Author(s):  
M. Smotherman ◽  
W. Metzner
Keyword(s):  

2006 ◽  
Vol 192 (5) ◽  
pp. 535-550 ◽  
Author(s):  
Jie Ma ◽  
Kohta Kobayasi ◽  
Shuyi Zhang ◽  
Walter Metzner

2017 ◽  
Vol 141 (5) ◽  
pp. 3011-3017 ◽  
Author(s):  
Xiaoyan Yin ◽  
Peiwen Qiu ◽  
Lili Yang ◽  
Rolf Müller
Keyword(s):  

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Sergey Alkhovsky ◽  
Sergey Lenshin ◽  
Alexey Romashin ◽  
Tatyana Vishnevskaya ◽  
Oleg Vyshemirsky ◽  
...  

We found and genetically described two novel SARS-like coronaviruses in feces and oral swabs of the greater (R. ferrumequinum) and the lesser (R. hipposideros) horseshoe bats in southern regions of Russia. The viruses, named Khosta-1 and Khosta-2, together with related viruses from Bulgaria and Kenya, form a separate phylogenetic lineage. We found evidence of recombination events in the evolutionary history of Khosta-1, which involved the acquisition of the structural proteins S, E, and M, as well as the nonstructural genes ORF3, ORF6, ORF7a, and ORF7b, from a virus that is related to the Kenyan isolate BtKY72. The examination of bats by RT-PCR revealed that 62.5% of the greater horseshoe bats in one of the caves were positive for Khosta-1 virus, while its overall prevalence was 14%. The prevalence of Khosta-2 was 1.75%. Our results show that SARS-like coronaviruses circulate in horseshoe bats in the region, and we provide new data on their genetic diversity.


2021 ◽  
Author(s):  
Xiran Wang ◽  
Zhihua Ou ◽  
Peiwen Ding ◽  
Chengcheng Sun ◽  
Daxi Wang ◽  
...  

Horseshoe bats (Rhinolophus sinicus) might help maintain coronaviruses severely affecting human health, such as SARS-CoV and SARS-CoV-2. It has long been suggested that bats may be more tolerant of viral infection than other mammals due to their unique immune system, but the exact mechanism remains to be fully explored. During the COVID-19 pandemic, multiple animal species were diseased by SARS-CoV-2 infection, especially in the respiratory system. Herein, single-cell transcriptomic data of the lungs of a horseshoe bat, a cat, a tiger, and a pangolin were generated. The receptor distribution of twenty-eight respiratory viruses belonging to fourteen viral families were characterized for the four species. Comparison on the immune-related transcripts further revealed limited cytokine activations in bats, which might explain the reason why bats experienced only mild diseases or even no symptoms upon virus infection. Our findings might increase our understanding of the immune background of horseshoe bats and their insensitivity to virus infections.


Author(s):  
Erica Krimmel ◽  
Austin Mast ◽  
Deborah Paul ◽  
Robert Bruhn ◽  
Nelson Rios ◽  
...  

Genomic evidence suggests that the causative virus of COVID-19 (SARS-CoV-2) was introduced to humans from horseshoe bats (family Rhinolophidae) (Andersen et al. 2020) and that species in this family as well as in the closely related Hipposideridae and Rhinonycteridae families are reservoirs of several SARS-like coronaviruses (Gouilh et al. 2011). Specimens collected over the past 400 years and curated by natural history collections around the world provide an essential reference as we work to understand the distributions, life histories, and evolutionary relationships of these bats and their viruses. While the importance of biodiversity specimens to emerging infectious disease research is clear, empowering disease researchers with specimen data is a relatively new goal for the collections community (DiEuliis et al. 2016). Recognizing this, a team from Florida State University is collaborating with partners at GEOLocate, Bionomia, University of Florida, the American Museum of Natural History, and Arizona State University to produce a deduplicated, georeferenced, vetted, and versioned data product of the world's specimens of horseshoe bats and relatives for researchers studying COVID-19. The project will serve as a model for future rapid data product deployments about biodiversity specimens. The project underscores the value of biodiversity data aggregators iDigBio and the Global Biodiversity Information Facility (GBIF), which are sources for 58,617 and 79,862 records, respectively, as of July 2020, of horseshoe bat and relative specimens held by over one hundred natural history collections. Although much of the specimen-based biodiversity data served by iDigBio and GBIF is high quality, it can be considered raw data and therefore often requires additional wrangling, standardizing, and enhancement to be fit for specific applications. The project will create efficiencies for the coronavirus research community by producing an enhanced, research-ready data product, which will be versioned and published through Zenodo, an open-access repository (see doi.org/10.5281/zenodo.3974999). In this talk, we highlight lessons learned from the initial phases of the project, including deduplicating specimen records, standardizing country information, and enhancing taxonomic information. We also report on our progress to date, related to enhancing information about agents (e.g., collectors or determiners) associated with these specimens, and to georeferencing specimen localities. We seek also to explore how much we can use the added agent information (i.e., ORCID iDs and Wikidata Q identifiers) to inform our georeferencing efforts and to support crediting those collecting and doing identifications. The project will georeference approximately one third of our specimen records, based on those lacking geospatial coordinates but containing textual locality descriptions. We furthermore provide an overview of our holistic approach to enhancing specimen records, which we hope will maximize the value of the bat specimens at the center of what has been recently termed the "extended specimen network" (Lendemer et al. 2020). The centrality of the physical specimen in the network reinforces the importance of archived materials for reproducible research. Recognizing this, we view the collections providing data to iDigBio and GBIF as essential partners, as we expect that they will be responsible for the long-term management of enhanced data associated with the physical specimens they curate. We hope that this project can provide a model for better facilitating the reintegration of enhanced data back into local specimen data management systems.


Author(s):  
Huihui Mou ◽  
Brian D. Quinlan ◽  
Haiyong Peng ◽  
Yan Guo ◽  
Shoujiao Peng ◽  
...  

SUMMARYThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related SARS-CoV-2, has been isolated from one horseshoe-bat species. Here we characterize the ability of S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, and RaTG13 to bind a range of ACE2 orthologs. We observed that the SARS-CoV-2 RBD bound human, pangolin, and horseshoe bat (R. macrotis) ACE2 more efficiently than the SARS-CoV-1 or RaTG13 RBD. Only the RaTG13 RBD bound rodent ACE2 orthologs efficiently. Five mutations drawn from ACE2 orthologs of nine Rhinolophus species enhanced human ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 by an immunoadhesin form of human ACE2 (ACE2-Fc). Two of these mutations impaired neutralization of SARS-CoV-1. An ACE2-Fc variant bearing all five mutations neutralized SARS-CoV-2 five-fold more efficiently than human ACE2-Fc. These data narrow the potential SARS-CoV-2 reservoir, suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of ACE2-Fc.


1998 ◽  
Vol 25 (5) ◽  
pp. 489 ◽  
Author(s):  
Chris R. Pavey

I examined habitat use by eastern horseshoe bats, Rhinolophus megaphyllus, in a fragmented woodland mosaic in south-east Queensland, Australia. I predicted that the species would forage within the remaining woodland remnants in the mosaic, because its flight pattern and auditory system are adapted for locating and capturing prey in cluttered habitat (i.e. close to and within vegetation). I studied habitat use by light-tagging and radio-tagging bats that roosted in a disused mine in a large woodland fragment. I observed bats within an area of 95 ha, which was composed of grassland (71% of area), woodland (14%), and edge habitat (boundary of woodland and grassland, and isolated trees in grassland – 15%). Bats foraged in woodland and edge habitat but not over grassland, and used woodland significantly more often than expected by its availability. Commuting bats left the woodland fragment in which the roost was located by one of two routes, both of which led into riparian woodland. One route was entirely within woodland, whereas the other route crossed 250 m of open ground. The study indicates that R. megaphyllus should respond negatively to the fragmentation of woodland and forest because this process will reduce the availability of its preferred foraging habitat.


Nature ◽  
1962 ◽  
Vol 196 (4860) ◽  
pp. 1185-1186 ◽  
Author(s):  
D. R. GRIFFIN ◽  
D. C. DUNNING ◽  
D. A. CAHLANDER ◽  
F. A. WEBSTER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document