WELL TESTING HORIZONTALGAS-CONDENSATE WELLS

2017 ◽  
pp. 56-61
Author(s):  
M. L. Karnaukhov ◽  
O. N. Pavelyeva

The well testing of gas-condensate horizontal wells are discussed in the article and the comparative analysis of borehole flow capacity, depending on the mode of it’s operation is presented. Extra attention is focused on the issue of timely identification of the reasons for the reduction of fluid withdrawal from the reservoir. The presence of high skin effect is proved, which confirms the existence of low-permeability of bottomhole formation zone related to condensation in the immediate area of the horizontal wellbore.

Author(s):  
Hadi Belhaj ◽  
M. S. Zaman ◽  
Terry Lay

Petrel, Eclipse and Monte Carlo are three simulators often used separately to evaluate reservoir structure, production performance and economics/planning/risk analysis respectively. Integration of the three packages provides a very comprehensive and efficient assessment tool for oilfields or blocks with limited data by avoiding incompatibility, data transformation and interface problems. Many oil and gas fields that have been discovered in the past and abandoned as a high risk venture have become of prime interest to numerous smart investors taking advantage of high oil prices and advanced technology. Some of these discoveries have exhibited reasonable hydrocarbon accumulations through seismic surveys, actual drilling and initial well-testing. Their development has previously been hindered by uncertainty and by low oil prices. The ALT Field, North Africa, is a typical example. Only nine vertical wells were drilled in the ALT Field during the 1960’s including three dry holes. Low production from three zones of Chalk Carbonate formation with moderate porosity and very low permeability (less than 1 md), meant the field has been abandoned for over three decades. Recently, with oil prices flourishing, the field has caught the eye of many potential developers. By utilizing the three-simulator approach, the ALT field has been verified as a potential producer of commercial oil. Two scenarios, single-pool and two-pool, have been established for describing the field structure, both are economically feasible, with more profitability foreseen from the single-pool scenario. The two-pool scenario demonstrated the field contains 885MMblls OIIP with estimated total reserves of 310MMbbls of oil using waterflooding alone and an additional 89MMbbls using CO2 injection. The existing six vertical producers are recommended to be used for injection, while a pattern of horizontal wells are suggested to be drilled and used as producers. The horizontal wells are favored over vertical ones to overcome the very low permeability situation. Development of the ALT Field is ongoing based upon the findings of this study. The idea of the three-simulator approach has proven workable, thus has potential to be used in similar cases once minor technical software problems are resolved.


2021 ◽  
Author(s):  
Sudad H AL-Obaidi ◽  
Chang WJ ◽  
Patkin AA

Production wells that have penetrated low-permeability reservoirs do not provide adequate oil production due to the degraded condition of the near-wellbore zones of the reservoir. Objective assessment of the condition of the near-wellbore formation zone of exploration and production wells by determining the magnitudes and values of skin effects using well tests allows timely implementation of measures to increase the productivity of wells and oil production.In this article, the following aspects of difficult-to-recover oil production were examined:- The analysis of the dependence of well productivity on the magnitude and significance of the skin effect, in order to assess the condition of the bottomhole formation zone for further planning and implementation of oil and gas inflow stimulation measures;- The influence of the magnitude and significance of the skin effect on the condition of the bottomhole formation zone on the experience of developing exploration wells penetrated into low-permeability formations in the fields of Western Siberia;- Criteria (based on the value and magnitude of the skin effect) for selecting methods of stimulating the bottomhole formation zone to increase the productivity of low-rate wells.


2021 ◽  
pp. 014459872110204
Author(s):  
Wan Cheng ◽  
Chunhua Lu ◽  
Guanxiong Feng ◽  
Bo Xiao

Multistaged temporary plugging fracturing in horizontal wells is an emerging technology to promote uniform fracture propagation in tight reservoirs by injecting ball sealers to plug higher-flux perforations. The seating mechanism and transportation of ball sealers remain poorly understood. In this paper, the sensitivities of the ball sealer density, casing injection rate and perforation angle to the seating behaviors are studied. In a vertical wellbore section, a ball sealer accelerates very fast at the beginning of the dropping and reaches a stable state within a few seconds. The terminal velocity of a non-buoyant ball is greater than the fluid velocity, while the terminal velocity of a buoyant ball is less than the fluid velocity. In the horizontal wellbore section, the terminal velocity of a non-buoyant or buoyant ball is less than the fracturing fluid flowing velocity. The ball sealer density is a more critical parameter than the casing injection rate when a ball sealer diverts to a perforation hole. The casing injection rate is a more critical parameter than the ball sealer density when a ball sealer seats on a perforation hole. A buoyant ball sealer associated with a high injection rate of fracturing fluid is highly recommended to improve the seating efficiency.


2019 ◽  
pp. 45-58
Author(s):  
A. A. Zakharov ◽  
S. V. Korotkov ◽  
A. I. Gritsenko ◽  
R. A. Ivakin ◽  
V. G. Griguletsky

The article reports the results of the analysis of the field prospecting activities of five exploratory wells at the Karmalinovskoye gas condensate field. We have found that the eastern part of the licensed area is characterized by the lack of fructuring in Paleozoic deposits, and the development of the productive deposit extends in the north-west direction. Hydraulic fracturing made it possible to get a stable gas and gas condensate flow rate in well № 4. This volume exceeds 3,8 times as large than flow rate in wells № 1 and № 2, which were tested after drilling without conducting hydraulic fracturing.


2020 ◽  
Vol 11 (29) ◽  
pp. 205-216 ◽  
Author(s):  
N.R. Krivova

The article describes an approach to the production of difficult to extract oil, confined to deposits with low poroperm properties, using a system of horizontal wells and hydraulic multistage fracturing. The main problems that arise during the development of the well are analyzed. A conclusion is reached on the possibility of continuing to apply the method based on the analysis of pilot tests.


Sign in / Sign up

Export Citation Format

Share Document