scholarly journals Production and transepithelial transportation of angiotensin-I-converting enzyme (ACE)-inhibitory peptides from whey protein hydrolyzed by immobilized Lactobacillus helveticus proteinase

2019 ◽  
Vol 102 (2) ◽  
pp. 961-975 ◽  
Author(s):  
Yuxing Guo ◽  
Xiaoxiao Jiang ◽  
Binyi Xiong ◽  
Tao Zhang ◽  
Xiaoqun Zeng ◽  
...  
2003 ◽  
Vol 69 (9) ◽  
pp. 5297-5305 ◽  
Author(s):  
F. Minervini ◽  
F. Algaron ◽  
C. G. Rizzello ◽  
P. F. Fox ◽  
V. Monnet ◽  
...  

ABSTRACT Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine αS1-casein (αS1-CN) 24-47 fragment (f24-47), f169-193, and β-CN f58-76; ovine αS1-CN f1-6 and αS2-CN f182-185 and f186-188; caprine β-CN f58-65 and αS2-CN f182-187; buffalo β-CN f58-66; and a mixture of three tripeptides originating from human β-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 μg/ml (100 μmol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC50) of some of the crude peptide fractions was very low (16 to 100 μg/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC50s were confirmed. An antibacterial peptide corresponding to β-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 μg/ml. Once generated, the bioactive peptides were resistant to further degradation by proteinase of L. helveticus PR4 or by trypsin and chymotrypsin.


2000 ◽  
Vol 67 (1) ◽  
pp. 53-64 ◽  
Author(s):  
ANNE PIHLANTO-LEPPÄLÄ ◽  
PÄIVI KOSKINEN ◽  
KATI PIILOLA ◽  
TUOMO TUPASELA ◽  
HANNU KORHONEN

The aim of this study was to identify whey-derived peptides with angiotensin I-converting enzyme (ACE) inhibitory activity. The bovine whey proteins α-lactalbumin and β-lactoglobulin were hydrolysed with pepsin, trypsin, chymotrypsin, pancreatin, elastase or carboxypeptidase alone and in combination. The total hydrolysates were fractionated in a two step ultrafiltration process, first with a 30 kDa membrane and then with a 1 kDa membrane. Inhibition of ACE was analysed spectrophotometrically. The peptides were isolated by chromatography and identified by mass and sequencing analysis. The most potent inhibitory peptides were synthesized by the 9-fluorenylmethoxycarbonyl solid phase method. Inhibition of ACE was observed after hydrolysis with trypsin alone, and with an enzyme combination containing pepsin, trypsin and chymotrypsin. Whey protein digests gave a 50 % inhibition (IC50) of ACE activity at concentration ranges within 345–1733 μg/ml. The IC50 values for the 1–30 kDa fractions ranged from 485 to 1134 μg/ml and for the <1 kDa fraction from 109 to 837 mg/ml. Several ACE-inhibitory peptides were isolated from the hydrolysates by reversed-phase chromatography, and the potencies of the purified peptide fractions had IC50 values of 77–1062 μM. The ACE-inhibitory peptides identified were α-lactalbumin fractions (50–52), (99–108) and (104–108) and β-lactoglobulin fractions (22–25), (32–40), (81–83), (94–100), (106–111) and (142–146).


1999 ◽  
Vol 66 (3) ◽  
pp. 431-439 ◽  
Author(s):  
YOO-KYEONG KIM ◽  
SUN YOON ◽  
DAE-YEUL YU ◽  
BO LÖNNERDAL ◽  
BONG-HYUN CHUNG

Recombinant human αs1-casein expressed in Escherichia coli was purified and digested with trypsin in an attempt to find peptides with angiotensin-I-converting enzyme (ACE) inhibitory activity. Three novel ACE inhibitory peptides, A-II, B-II and C, were isolated and their amino acid sequences identified as Tyr–Pro–Glu–Arg (residues 8–11), Tyr–Tyr–Pro–Gln–Ile–Met–Gln–Tyr (residues 136–143) and Asn–Asn–Val–Met–Leu–Gln–Trp (residues 164–170) respectively. ACE inhibitory activities were measured for the corresponding synthetic peptides, and the ACE IC50 (the amount of peptide causing 50% inhibition of ACE activity) values of A-II, B-II and C estimated to be 132·5, 24·8 and 41·0 μmol/l respectively. Peptides A-II and C were resistant to further digestion by pepsin, whereas peptide B-II was hydrolysed. All three peptides were resistant to digestion by chymotrypsin. These ACE inhibitory peptides may prove useful for oral administration in the treatment of hypertension.


Sign in / Sign up

Export Citation Format

Share Document