scholarly journals Infrared milk analyzers: Milk urea nitrogen calibration

Author(s):  
M. Portnoy ◽  
C. Coon ◽  
D.M. Barbano
2007 ◽  
Vol 82 (1-2) ◽  
pp. 42-50 ◽  
Author(s):  
P. Arunvipas ◽  
J.A. VanLeeuwen ◽  
I.R. Dohoo ◽  
E.R. Leger ◽  
G.P. Keefe ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 171-171
Author(s):  
Matthew R Beck ◽  
Cameron Marshall ◽  
Konagh Garrett ◽  
Andrew P Foote ◽  
Ronaldo Vibart ◽  
...  

Abstract Urine nitrogen excretion (g/d; UN) represent a significant environmental impact for both confinement feeding and pastoral based dairy systems. It is difficult to measure UN directly due to animal handling and labor requirements, especially in forage based production systems. The currently available milk urea nitrogen (MUN) equations have been shown to overestimate UN excretion of grazing dairy cows compared with an equation using urinary creatinine and UN concentration, indicating that diet may alter the relationship between MUN and UN. This potential was explored using data retrieved (treatment means: n = 69 and 27 for fresh forage [FF] and total mixed ration [TMR] fed cattle, respectively) from the literature and new data obtained from dairy cows fed FF (n = 15) in metabolism crates was used to test the new equations. The TMR data from literature was further split into a training set (to develop the model; n = 53) and a test set (to validate the model; n = 16). There was an interaction for diet type (P < 0.01) where UN (g/d) = 0.023 × MUN (mg/dL) × live-weight (kg, LW) for TMR fed cattle, (similar to a pre-established equation); however, UN (g/d) = 0.015 × MUN × LW for FF fed cattle. For FF based equations, the New MUN equation and the creatinine equation showed good precision and accuracy (Lin’s CCC = 0.79 and 0.74, respectively) and adequate predictive ability (RMSEP = 29.8 and 35.9, respectively). The new MUN equation for TMR fed cattle showed excellent accuracy and precision (Lin’s CCC = 0.87) with good predictive ability (RMSEP = 24.3) for UN excretion (observed mean = 216.5 g/d). The new equations generated during this meta-analysis provide promising predictive ability of UN excretion, which can be used for management considerations, future research, and policy making.


2000 ◽  
Vol 83 (3) ◽  
pp. 459-463 ◽  
Author(s):  
P. Melendez ◽  
A. Donovan ◽  
J. Hernandez

2016 ◽  
Vol 79 (5) ◽  
pp. 816-820
Author(s):  
LARISSA NAZARETH de FREITAS ◽  
LAERTE DAGHER CASSOLI ◽  
JANIELEN da SILVA ◽  
JOSÉ CARLOS de FIGUEIREDO PANTOJA ◽  
PAULO FERNANDO MACHADO

ABSTRACT Total bacterial count (TBC) is a tool used to assess milk quality and is associated with not only the initial sample contamination but also the sample storage time and temperature. Several countries have reported milk samples with a high TBC, and the influence of TBC on milk preservation remains unclear. Thus, the aim of this study was to evaluate the impact of the initial bacterial contamination level on the macrocomponents and somatic cell count (SCC) of raw milk samples preserved with bronopol and maintained at two storage temperatures (7 and 25°C) for up to 12 days. Thus, we collected milk samples from 51 dairy farms, which were divided into two groups according to the initial bacterial load: low TBC (<100,000 CFU/ml) and high TBC (≥100,000 CFU/ml). We analyzed the sample composition for protein, fat, total solids, lactose, milk urea nitrogen, and the SCC. We did not observe an effect from TBC and storage time and temperature on the concentration of protein, fat, total solids, and lactose. SCC changes were not observed for samples maintained under refrigeration (7°C); however, samples maintained at room temperature (25°C) exhibited a decrease in the SCC beginning on day 6 of storage. For milk urea nitrogen, values increased when the samples were maintained at room temperature, beginning on the ninth storage day. Samples with the preservative bronopol added and maintained under refrigeration may be analyzed up to 12 days after collection, regardless of the milk microbial load.


2019 ◽  
Vol 18 (1) ◽  
pp. 405-409 ◽  
Author(s):  
Chiara Roveglia ◽  
Giovanni Niero ◽  
Mauro Penasa ◽  
Raffaella Finocchiaro ◽  
Maurizio Marusi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document