Multicenter validation of a formula predicting postoperative spinopelvic alignment

2012 ◽  
Vol 16 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Virginie Lafage ◽  
Neil J. Bharucha ◽  
Frank Schwab ◽  
Robert A. Hart ◽  
Douglas Burton ◽  
...  

Object Sagittal spinopelvic imbalance is a major contributor to pain and disability for patients with adult spinal deformity (ASD). Preoperative planning is essential for pedicle subtraction osteotomy (PSO) candidates; however, current methods are often inaccurate because no formula to date predicts both postoperative sagittal balance and pelvic alignment. The authors of this study aimed to evaluate the accuracy of 2 novel formulas in predicting postoperative spinopelvic alignment after PSO. Methods This study is a multicenter retrospective consecutive PSO case series. Adults with spinal deformity (> 21 years old) who were treated with a single-level lumbar PSO for sagittal imbalance were evaluated. All patients underwent preoperative and a minimum of 6-month postoperative radiography. Two novel formulas were used to predict the postoperative spinopelvic alignment. The results predicted by the formulas were then compared with the actual postoperative radiographic values, and the formulas' ability to identify successful (sagittal vertical axis [SVA] ≤ 50 mm and pelvic tilt [PT] ≤ 25°) and unsuccessful (SVA > 50 mm or PT > 25°) outcomes was evaluated. Results Ninety-nine patients met inclusion criteria. The median absolute error between the predicted and actual PT was 4.1° (interquartile range 2.0°–6.4°). The median absolute error between the predicted and actual SVA was 27 mm (interquartile range 11–47 mm). Forty-one of 54 patients with a formula that predicted a successful outcome had a successful outcome as shown by radiography (positive predictive value = 0.76). Forty-four of 45 patients with a formula that predicted an unsuccessful outcome had an unsuccessful outcome as shown by radiography (negative predictive value = 0.98). Conclusions The spinopelvic alignment formulas were accurate when predicting unsuccessful outcomes but less reliable when predicting successful outcomes. The preoperative surgical plan should be altered if an unsuccessful result is predicted. However, even after obtaining a predicted successful outcome, surgeons should ensure that the predicted values are not too close to unsuccessful values and should identify other variables that may affect alignment. In the near future, it is anticipated that the use of these formulas will lead to better surgical planning and improved outcomes for patients with complex ASD.

2016 ◽  
Vol 25 (6) ◽  
pp. 697-705 ◽  
Author(s):  
Russell G. Strom ◽  
Junseok Bae ◽  
Jun Mizutani ◽  
Frank Valone ◽  
Christopher P. Ames ◽  
...  

OBJECTIVE Lateral interbody fusion (LIF) with percutaneous screw fixation can treat adult spinal deformity (ASD) in the coronal plane, but sagittal correction is limited. The authors combined LIF with open posterior (OP) surgery using facet osteotomies and a rod-cantilever technique to enhance lumbar lordosis (LL). It is unclear how this hybrid strategy compares to OP surgery alone. The goal of this study was to evaluate the combination of LIF and OP surgery (LIF+OP) for ASD. METHODS All thoracolumbar ASD cases from 2009 to 2014 were reviewed. Patients with < 6 months follow-up, prior fusion, severe sagittal imbalance (sagittal vertical axis > 200 mm or pelvic incidence-LL > 40°), and those undergoing anterior lumbar interbody fusion were excluded. Deformity correction, complications, and outcomes were compared between LIF+OP and OP-only surgery patients. RESULTS LIF+OP (n = 32) and OP-only patients (n = 60) had similar baseline features and posterior fusion levels. On average, 3.8 LIFs were performed. Patients who underwent LIF+OP had less blood loss (1129 vs 1833 ml, p = 0.016) and lower durotomy rates (0% vs 23%, p = 0.002). Patients in the LIF+OP group required less ICU care (0.7 vs 2.8 days, p < 0.001) and inpatient rehabilitation (63% vs 87%, p = 0.015). The incidence of new leg pain, numbness, or weakness was similar between groups (28% vs 22%, p = 0.609). All leg symptoms resolved within 6 months, except in 1 OP-only patient. Follow-up duration was similar (28 vs 25 months, p = 0.462). LIF+OP patients had significantly less pseudarthrosis (6% vs 27%, p = 0.026) and greater improvement in visual analog scale back pain (mean decrease 4.0 vs 1.9, p = 0.046) and Oswestry Disability Index (mean decrease 21 vs 12, p = 0.035) scores. Lumbar coronal correction was greater with LIF+OP surgery (mean [± SD] 22° ± 13° vs 14° ± 13°, p = 0.010). LL restoration was 22° ± 13°, intermediately between OP-only with facet osteotomies (11° ± 7°, p < 0.001) and pedicle subtraction osteotomy (29° ± 10°, p = 0.045). CONCLUSIONS LIF+OP is an effective strategy for ASD of moderate severity. Compared with the authors' OP-only operations, LIF+OP was associated with faster recovery, fewer complications, and greater relief of pain and disability.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254381
Author(s):  
Ki Young Lee ◽  
Jung-Hee Lee ◽  
Sang Kyu Im ◽  
Hae Sung Lim ◽  
Gil Han

Objective In this study, we evaluated factors affecting changes in cervical lordosis after deformity correction and during follow-up period in adult spinal deformity (ASD) patients with severe sagittal imbalance. Methods Seventy-nine patients, with an average age of 71.6 years, who underwent long-segment fixation from T10 to S1 with sacropelvic fixation were included. We performed a comparative analysis of the radiographic parameters after surgery (Post) and at the last follow-up (Last). We calculated the Pearson’s correlation coefficient and performed multilinear regression analysis to predict independent parameters for Post and Last cervical lordosis (CL), T1 slope (T1S), and thoracic kyphosis (TK). Results Hyperlordotic changes of -23.3° in CL before surgery was reduced to -7° after surgery, and Last CL had increased to -15.3°. T1S was reduced from 27° before surgery to 14.4° after surgery and had increased to 18.8° at the last follow-up. Through multilinear regression analysis, we found that Post CL and T1S were more significantly affected by the amount of LL correction (p = .045 and .049). The effect of Last T1S was significantly associated with the Last CL; the effect of Last TK, with the Last T1S; and the effect of Post PI-LL, with the Last TK (p < .05). Conclusion The postoperative kyphotic change in CL in ASD patients with preoperative cervical hyperlordosis is not permanent and is affected by drastic LL correction and SVA restoration. To achieve spinopelvic harmony proportional to the difference in LL relative to PI, TK becomes modified over time to increase T1S and CL, in an effort to achieve optimal spine curvature.


2019 ◽  
Vol 31 (3) ◽  
pp. 397-407 ◽  
Author(s):  
Darryl Lau ◽  
Cecilia L. Dalle Ore ◽  
Patrick Reid ◽  
Michael M. Safaee ◽  
Vedat Deviren ◽  
...  

OBJECTIVEThe benefits and utility of routine neuromonitoring with motor and somatosensory evoked potentials during lumbar spine surgery remain unclear. This study assesses measures of performance and utility of transcranial motor evoked potentials (MEPs) during lumbar pedicle subtraction osteotomy (PSO).METHODSThis is a retrospective study of a single-surgeon cohort of consecutive adult spinal deformity (ASD) patients who underwent lumbar PSO from 2006 to 2016. A blinded neurophysiologist reviewed individual cases for MEP changes. Multivariate analysis was performed to determine whether changes correlated with neurological deficits. Measures of performance were calculated.RESULTSA total of 242 lumbar PSO cases were included. MEP changes occurred in 38 (15.7%) cases; the changes were transient in 21 cases (55.3%) and permanent in 17 (44.7%). Of the patients with permanent changes, 9 (52.9%) had no recovery and 8 (47.1%) had partial recovery of MEP signals. Changes occurred at a mean time of 8.8 minutes following PSO closure (range: during closure to 55 minutes after closure). The mean percentage of MEP signal loss was 72.9%. The overall complication rate was 25.2%, and the incidence of new neurological deficits was 4.1%. On multivariate analysis, MEP signal loss of at least 50% was not associated with complication (p = 0.495) or able to predict postoperative neurological deficits (p = 0.429). Of the 38 cases in which MEP changes were observed, the observation represented a true-positive finding in only 3 cases. Postoperative neurological deficits without MEP changes occurred in 7 cases. Calculated measures of performance were as follows: sensitivity 30.0%, specificity 84.9%, positive predictive value 7.9%, and negative predictive value 96.6%. Regarding the specific characteristics of the MEP changes, only a signal loss of 80% or greater was significantly associated with a higher rate of neurological deficit (23.0% vs 0.0% for loss of less than 80%, p = 0.021); changes of less than 80% were not associated with postoperative deficits.CONCLUSIONSNeuromonitoring has a low positive predictive value and low sensitivity for detecting new neurological deficits. Even when neuromonitoring is unchanged, patients can still have new neurological deficits. The utility of transcranial MEP monitoring for lumbar PSO remains unclear but there may be advantages to its use.


2019 ◽  
Vol 19 (9) ◽  
pp. S66-S67
Author(s):  
Peter G. Passias ◽  
Cole Bortz ◽  
Haddy Alas ◽  
Avery Brown ◽  
Katherine E. Pierce ◽  
...  

Neurosurgery ◽  
2017 ◽  
Vol 81 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Michael M. McDowell ◽  
Zachary J. Tempel ◽  
Gurpreet S. Gandhoke ◽  
Nicholas K. Khattar ◽  
D. Kojo Hamilton ◽  
...  

Abstract BACKGROUND: Sagittal balance in adult spinal deformity is a major predictor of quality of life. A temporary loss of paraspinal muscle force and somatic pain following spine surgery may limit a patient's ability to maintain posture. OBJECTIVE: To assess the evolution of sagittal balance and clinical outcomes during recovery from adult spinal deformity surgery. METHODS: Retrospective review of a prospective observational database identified a consecutive series of patients with sagittal vertical axis (SVA) &gt; 40 mm undergoing adult deformity surgery. Radiographic parameters and clinical outcomes were measured out to 2 yr after surgery. RESULTS: A total of 113 consecutive patients met inclusion criteria. Mean preoperative SVA was 90.3 mm, increased to 104.6 mm in the first week, then gradually reduced at each follow-up interval to 59.2 mm at 6 wk, 45.0 mm at 3 mo, 38.6 mm at 6 mo, and 34.1 mm at 1 yr (all P &lt; .05). SVA did not change between 1 and 2 yr. Pelvic incidence-lumbar lordosis (PI-LL) corrected immediately from 25.3° to 8.5° (16.8° change; P &lt; .01) and a decreased pelvic tilt from 27.6° to 17.6° (10° change; P &lt; .01). No further change was noted in PI-LL. Pelvic tilt increased to 20.2° (P = .01) at 6 wk and held steady through 2 yr. Mean Visual Analog Scale, Oswestry Disability Index, and Short Form-36 scores all improved; pain rapidly improved, whereas disability measures improved as SVA improved. CONCLUSION: Radiographic assessment of global sagittal alignment did not fully reflect surgical correction of sagittal balance until 6 mo after adult deformity surgery. Sagittal balance initially worsened then steadily improved at each interval over the first year postoperatively. At 1 yr, all clinical and radiographic measures outcomes were significantly improved.


Author(s):  
Martin H. Pham ◽  
Vrajesh J. Shah ◽  
Luis Daniel Diaz-Aguilar ◽  
Joseph A. Osorio ◽  
Ronald A. Lehman

2013 ◽  
Vol 19 (4) ◽  
pp. 507-514 ◽  
Author(s):  
Masahiro Kanayama

The Xia 3 SUK Direct Vertebral Rotation (DVR) System was developed for performing the vertebral derotation maneuver in scoliosis surgery. The author applied this device to sagittal plane correction in pedicle subtraction osteotomy for adult spinal deformity. The surgical procedure included 1) preparing secure proximal and distal foundations for correction using mutisegmental pedicle screw-rod fixation (to avoid stress concentration to a specific screw-bone interface), 2) decancellating only the posterior two-thirds of the vertebral column, 3) providing supplemental interbody fusion above and below the osteotomy site (the anterior one-third of the vertebral column and interbody cages serve as an anterior column support and a pivot of correction), 4) closing the osteotomy by gradual approximation of SUK tubes secured to the proximal- and distal-most screw heads, and 5) connecting rods between the proximal and distal screw-rod constructs. Eight consecutive patients with fixed sagittal imbalance were treated using this surgical procedure. No patient required distal fixation points extending to the sacrum and/or pelvis. The sagittal plane correction was 43°. The mean anterior deviation of the C-7 plumb line was improved from 12.7 cm to 4.0 cm immediately after surgery, and it was 6.0 cm at the final follow-up. A pedicle subtraction osteotomy using the Xia 3 SUK DVR System ensures a safe and secure sagittal plane correction in adult spinal deformity.


Sign in / Sign up

Export Citation Format

Share Document