scholarly journals Adult revision surgery of prior hook-and-rod wire instrumentation for idiopathic scoliosis

2020 ◽  
Vol 2 (1) ◽  
pp. V4
Author(s):  
Rebecca M. Burke ◽  
Thomas J. Buell ◽  
Dominic M. Maggio ◽  
Ulas Yener ◽  
Chun-Po Yen ◽  
...  

Adolescent idiopathic scoliosis patients treated with spinal fusion may develop adjacent segment disease and curve progression into adulthood. Revision operations can be challenging, especially for adult patients treated with outdated instrumentation such as sublaminar hooks and/or wires. The authors demonstrate revision lumbar spine surgery in a 38-year-old female with scoliosis progression from junctional degeneration below a prior T5–L3 posterior instrumented arthrodesis with a hook-and-rod wire system. They also demonstrate safe application of an ultrasonic bone scalpel for completion of a Smith-Petersen osteotomy. The patient provided written, informed consent for all material presented in this case demonstration.The video can be found here: https://youtu.be/3PmaFtNcqKc.

2020 ◽  
Vol 23 (03) ◽  
pp. 2030002
Author(s):  
Jonathan Horng ◽  
Xue-Cheng Liu ◽  
John Thometz ◽  
Channing Tassone ◽  
Benjamin Escott

Purpose: Formetric 4D dynamic system (F4D) is a radiation-free imaging system that can be used to detect static and dynamic back contour in children with adolescent idiopathic scoliosis (AIS). The aim of this paper is (1) to compare the F4D to other systems; (2) to review the correlation of spinal measurements taken by F4D with those taken by radiographs as well as the reproducibility of the F4D; (3) to present future clinical uses and suggest potential research studies utilizing F4D. Methods: MEDLINE (PubMed), ScienceDIRECT, SCOPUS, Cochrane, and Web of Science were queried for studies on AIS using surface topography. Papers were evaluated using PRISMA criteria. Results: Correlations between scoliosis angle as measured by F4D and Cobb angle by radiographs are from 0.7 to 0.872 in the thoracic spine and from 0.5 to 0.758 in the lumbar spine. The intraday reliability of F4D measurements by the same observer ranged from 0.65 to 0.996 across two studies. The study that evaluated reproducibility of F4D when segmented by patients with BMI below and above 24.99 kg/m2 found that the reproducibility was 0.990 and 0.995, respectively. There is potential for using F4D as a screening tool for scoliosis using an algorithm with 92% sensitivity and 74% specificity. Conclusions: F4D as a surface topography machine has great potential in screening and monitoring progression of the curvatures of AIS.


Author(s):  
Steven de Reuver ◽  
Philip P. van der Linden ◽  
Moyo C. Kruyt ◽  
Tom P. C. Schlösser ◽  
René M. Castelein

Abstract Purpose Pelvic morphology dictates the alignment and biomechanics of the spine. Recent observations in different types of adolescent idiopathic scoliosis indicate that individual pelvic morphology is related to the spinal levels in which scoliosis develops: primary lumbar adolescent scoliosis is associated with a higher pelvic incidence (PI) than thoracic scoliosis and non-scoliotic controls. We hypothesize that adult degenerative scoliosis (ADS) of the lumbar spine follows the same mechanical principles and is associated with a high PI. Methods This study used an existing CT-scan database, 101 ADS patients were sex and age matched to 101 controls. The PI was measured by two observers with multi-planar reconstruction, perpendicular to the hip-axis according to a previously validated technique. Results The PI was 54.1° ± 10.8° in ADS patients and 47.7° ± 10.8° in non-scoliotic controls (p < 0.001). The median ADS curve apex was the disc L2-3 and median curve length was 4 vertebral levels. The mean supine Cobb angle was 21° ± 8° (ranged 10°–47°). There was no significant correlation between PI and the apex level (p = 0.883), the curve length (p = 0.418) or the Cobb angle (p = 0.518). Conclusions ADS normally develops de novo in the lumbar spine of patients with a higher PI than controls, similar to primary lumbar adolescent idiopathic scoliosis. This suggests a shared mechanical basis of both deformities. Pelvic morphology dictates spinal sagittal alignment, which determines the segments of the spine that are prone to develop scoliosis.


Author(s):  
Tito Bassani ◽  
Andrea Cina ◽  
Dominika Ignasiak ◽  
Noemi Barba ◽  
Fabio Galbusera

A major clinical challenge in adolescent idiopathic scoliosis (AIS) is the difficulty of predicting curve progression at initial presentation. The early detection of progressive curves can offer the opportunity to better target effective non-operative treatments, reducing the need for surgery and the risks of related complications. Predictive models for the detection of scoliosis progression in subjects before growth spurt have been developed. These models accounted for geometrical parameters of the global spine and local descriptors of the scoliotic curve, but neglected contributions from biomechanical measurements such as trunk muscle activation and intervertebral loading, which could provide advantageous information. The present study exploits a musculoskeletal model of the thoracolumbar spine, developed in AnyBody software and adapted and validated for the subject-specific characterization of mild scoliosis. A dataset of 100 AIS subjects with mild scoliosis and in pre-pubertal age at first examination, and recognized as stable (60) or progressive (40) after at least 6-months follow-up period was exploited. Anthropometrical data and geometrical parameters of the spine at first examination, as well as biomechanical parameters from musculoskeletal simulation replicating relaxed upright posture were accounted for as predictors of the scoliosis progression. Predicted height and weight were used for model scaling because not available in the original dataset. Robust procedure for obtaining such parameters from radiographic images was developed by exploiting a comparable dataset with real values. Six predictive modelling approaches based on different algorithms for the binary classification of stable and progressive cases were compared. The best fitting approaches were exploited to evaluate the effect of accounting for the biomechanical parameters on the prediction of scoliosis progression. The performance of two sets of predictors was compared: accounting for anthropometrical and geometrical parameters only; considering in addition the biomechanical ones. Median accuracy of the best fitting algorithms ranged from 0.76 to 0.78. No differences were found in the classification performance by including or neglecting the biomechanical parameters. Median sensitivity was 0.75, and that of specificity ranged from 0.75 to 0.83. In conclusion, accounting for biomechanical measures did not enhance the prediction of curve progression, thus not supporting a potential clinical application at this stage.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Mitchell A. Johnson ◽  
John M. Flynn ◽  
Jason B. Anari ◽  
Shivani Gohel ◽  
Patrick J. Cahill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document