Symptom-specific differential motor network modulation by deep brain stimulation in Parkinson’s disease

2021 ◽  
pp. 1-9
Author(s):  
William S. Gibson ◽  
Aaron E. Rusheen ◽  
Yoonbae Oh ◽  
Myung-Ho In ◽  
Krzysztof R. Gorny ◽  
...  

OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established neurosurgical treatment for the motor symptoms of Parkinson’s disease (PD). While often highly effective, DBS does not always yield optimal therapeutic outcomes, and stimulation-induced adverse effects, including paresthesia, muscle contractions, and nausea/lightheadedness, commonly occur and can limit the efficacy of stimulation. Currently, objective metrics do not exist for monitoring neural changes associated with stimulation-induced therapeutic and adverse effects. METHODS In the present study, the authors combined intraoperative functional MRI (fMRI) with STN DBS in 20 patients with PD to test the hypothesis that stimulation-induced blood oxygen level–dependent signals contained predictive information concerning the therapeutic and adverse effects of stimulation. RESULTS As expected, DBS resulted in blood oxygen level–dependent activation in myriad motor regions, including the primary motor cortex, caudate, putamen, thalamus, midbrain, and cerebellum. Across the patients, DBS-induced improvements in contralateral Unified Parkinson’s Disease Rating Scale tremor subscores correlated with activation of thalamic, brainstem, and cerebellar regions. In addition, improvements in rigidity and bradykinesia subscores correlated with activation of the primary motor cortex. Finally, activation of specific sensorimotor-related subregions correlated with the presence of DBS-induced adverse effects, including paresthesia and nausea (cerebellar cortex, sensorimotor cortex) and unwanted muscle contractions (caudate and putamen). CONCLUSIONS These results suggest that DBS-induced activation patterns revealed by fMRI contain predictive information with respect to the therapeutic and adverse effects of DBS. The use of fMRI in combination with DBS therefore may hold translational potential to guide and improve clinical stimulator optimization in patients.

Author(s):  
Azari H ◽  

Background: Deep Brain Stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson’s Disease (PD). The two most common sites for DBS are the Subthalamic Nucleus (STN) and Globus Pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared. Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson’s Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3) at least five participants in each group; (4) conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale. Results: 3577 potentially relevant articles were identified 3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS III scores. Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.


2021 ◽  
Author(s):  
Hushyar Azari

Abstract Background: Deep brain stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson's disease (PD). The two most common sites for DBS are the subthalamic nucleus (STN) and globus pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared.Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson's Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3)at least five participants in each group; (4)conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale.Results: 3577 potentially relevant articles were identified,3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS ш scores.Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.


2018 ◽  
Vol 38 (19) ◽  
pp. 4556-4568 ◽  
Author(s):  
Doris D. Wang ◽  
Coralie de Hemptinne ◽  
Svjetlana Miocinovic ◽  
Jill L. Ostrem ◽  
Nicholas B. Galifianakis ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 80-86 ◽  
Author(s):  
Ho-Sung Ryu ◽  
Mi-Sun Kim ◽  
Sooyeoun You ◽  
Mi-Jung Kim ◽  
Young Jin Kim ◽  
...  

2014 ◽  
Vol 262 (3) ◽  
pp. 578-584 ◽  
Author(s):  
Adolfo Ramirez-Zamora ◽  
Max Kahn ◽  
Joannalee Campbell ◽  
Priscilla DeLaCruz ◽  
Julie G. Pilitsis

Sign in / Sign up

Export Citation Format

Share Document