scholarly journals Augmented-reality template guided transorbital approach for intradural tumors

2022 ◽  
Vol 6 (1) ◽  
pp. V3

For “minimally invasive” approaches to a deep-lying skull base lesion, the bone opening must be precisely placed and adequately wide to accomplish the surgical goal. Surgical rehearsal in virtual reality (VR) can generate navigation-integrated augmented reality (AR) templates to ensure precise surgical openings. In this video, the authors used AR templates for the transpalpebral, transorbital approach for intradural tumors. VR renderings of patient-specific anatomy were used in surgical rehearsal. The optimal openings were saved and, at surgery, projected into the eyepiece of the navigation-tracked microscope. The template enhanced the planning of the incision and soft-tissue exposure and guided the drill toward the target. The video can be found here: https://stream.cadmore.media/r10.3171/2021.10.FOCVID21172

Author(s):  
Nicolás González Romo ◽  
Franco Ravera Zunino

AbstractVirtual reality (VR) has increasingly been implemented in neurosurgical practice. A patient with an unruptured anterior communicating artery (AcoA) aneurysm was referred to our institution. Imaging data from computed tomography angiography (CTA) was used to create a patient specific 3D model of vascular and skull base anatomy, and then processed to a VR compatible environment. Minimally invasive approaches (mini-pterional, supraorbital and mini-orbitozygomatic) were simulated and assessed for adequate vascular exposure in VR. Using an eyebrow approach, a mini-orbitozygomatic approach was performed, with clip exclusion of the aneurysm from the circulation. The step-by-step process of VR planning is outlined, and the advantages and disadvantages for the neurosurgeon of this technology are reviewed.


2020 ◽  
Vol 2 (2) ◽  
pp. V5
Author(s):  
Evan Joyce ◽  
Michael Karsy ◽  
Serge Makarenko ◽  
Gretchen M. Oakley ◽  
William T. Couldwell

Anterior skull base approaches have included endoscopic or open microsurgical approaches for intracranial pathologies. However, discussion of a combined hybrid, cranioendoscopic approach, leveraging the benefits of both techniques, has been limited. Here we describe a case of a combined endoscopic, endonasal, and open microsurgical frontotemporal approach for resection of a complex anterior skull base lesion. A 62-year-old man with a large meningioma extending intradurally through the cribiform plate and sphenoethmoidal sinuses underwent a cranioendoscopic resection. Surgical techniques, including repair of the anterior skull base defect as well as complication avoidance and the coordination of multiple surgeons, are discussed.The video can be found here: https://youtu.be/Ti9tUUdWgJc.


OTO Open ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 2473974X1880449 ◽  
Author(s):  
Samuel R. Barber ◽  
Kevin Wong ◽  
Vivek Kanumuri ◽  
Ruwan Kiringoda ◽  
Judith Kempfle ◽  
...  

Otolaryngologists increasingly use patient-specific 3-dimensional (3D)–printed anatomic physical models for preoperative planning. However, few reports describe concomitant use with virtual models. Herein, we aim to (1) use a 3D-printed patient-specific physical model with lateral skull base navigation for preoperative planning, (2) review anatomy virtually via augmented reality (AR), and (3) compare physical and virtual models to intraoperative findings in a challenging case of a symptomatic petrous apex cyst. Computed tomography (CT) imaging was manually segmented to generate 3D models. AR facilitated virtual surgical planning. Navigation was then coupled to 3D-printed anatomy to simulate surgery using an endoscopic approach. Intraoperative findings were comparable to simulation. Virtual and physical models adequately addressed details of endoscopic surgery, including avoidance of critical structures. Complex lateral skull base cases may be optimized by surgical planning via 3D-printed simulation with navigation. Future studies will address whether simulation can improve patient outcomes.


Author(s):  
Kostyantyn Malukhin ◽  
Kornel Ehmann

This is an informed assessment of the state of the art and an extensive inventory of modeling approaches and methods for soft tissue/medical cutting tool interaction and of the associated medical processes and phenomena. Modeling and simulation through numerical, theoretical, computational, experimental, and other methods was discussed in comprehensive review sections each of which is concluded with a plausible prospective discussion biased toward the development of so-called virtual reality (VR) simulator environments. The finalized prospective section reflects on the future demands in the area of soft tissue cutting modeling and simulation mostly from a conceptual angle with emphasis on VR development requirements including real-time VR simulator response, cost-effective “close-to-reality” VR implementations, and other demands. The review sections that serve as the basis for the suggested prospective needs are categorized based on: (1) Major VR simulator applications including virtual surgery education, training, operation planning, intraoperative simulation, image-guided surgery, etc. and VR simulator types, e.g., generic, patient-specific and surgery-specific and (2) Available numerical, theoretical, and computational methods in terms of robustness, time effectiveness, computational cost, error control, and accuracy of modeling of certain types of virtual surgical interventions and their experimental validation, geared toward ethically driven artificial “phantom” tissue-based approaches. Digital data processing methods used in modeling of various feedback modalities in VR environments are also discussed.


Author(s):  
Walter C Jean

Abstract A “keyhole” approach to a deep-lying skull base lesion, as such a clinoid meningioma, can be a daunting challenge.1-3 The minimally invasive exposure must be precisely placed and adequately wide to accomplish the surgical goal. Surgical rehearsal in virtual reality (VR) can not only increase the confidence of the surgeon through practice on patient-specific anatomy,4 but it can also generate navigation-integrated templates to ensure precise placement and adequate bone openings. In this operative video, we demonstrate the use of an augmented reality (AR) template in a 69-yr-old woman with a growing clinoid meningioma. The 3-dimensional, VR rendering (SNAP VR360, Surgical Theater Inc, Cleveland, Ohio) of her right clinoid meningioma was used in surgical rehearsal for the mini-pterional approach with extradural clinoidectomy. The optimal opening was saved as a VR file and, at surgery, projected into the eye-piece of the navigation-tracked microscope (Synchronized AR v3.8.0, Surgical Theater Inc). In this manner, the surgical opening in the template was visible in AR on the patient's anatomy in real time during surgery. The template enhanced the planning of the incision and soft-tissue exposure, guided the drilling of the sphenoid wing, facilitated the extradural clinoidectomy,5 and ultimately facilitated the accomplishment of the surgical goal of total resection of the meningioma. With this application of novel technology, the surgeon is no longer using navigation to get her/his bearings. Instead, the surgeon is using AR-enhanced navigation to duplicate a plan that is known to work. This is a fundamental paradigm shift.  Patient consent was obtained prior to the creation of the video and is available on request.


2012 ◽  
Author(s):  
R. A. Grier ◽  
H. Thiruvengada ◽  
S. R. Ellis ◽  
P. Havig ◽  
K. S. Hale ◽  
...  

2019 ◽  
Vol 16 (2) ◽  
pp. 22-31
Author(s):  
Christian Zabel ◽  
Gernot Heisenberg

Getrieben durch populäre Produkte und Anwendungen wie Oculus Rift, Pokémon Go oder der Samsung Gear stößt Virtual Reality, Augmented Reality und auch Mixed Reality auf zunehmend großes Interesse. Obwohl die zugrunde liegenden Technologien bereits seit den 1990er Jahren eingesetzt werden, ist eine breitere Adoption erst seit relativ kurzer Zeit zu beobachten. In der Folge ist ein sich schnell entwickelndes Ökosystem für VR und AR entstanden (Berg & Vance, 2017). Aus einer (medien-) politischen Perspektive interessiert dabei, welche Standortfaktoren die Ansiedlung und Agglomeration dieser Firmen begünstigen. Da die Wertschöpfungsaktivitäten sowohl hinsichtlich der Zielmärkte als auch der Leistungserstellung (z. B. starker Einsatz von IT und Hardware in der Produkterstellung) von denen klassischer Medienprodukte deutlich abweichen, kann insbesondere gefragt werden, ob die VR-, MR- und AR-Unternehmen mit Blick auf die Ansiedlungspolitik als Teil der Medienbranche aufzufassen sind und somit auf die für Medienunternehmen besonders relevanten Faktoren in ähnlichem Maße reagieren. Der vorliegende Aufsatz ist das Ergebnis eines Forschungsprojekts im Auftrag des Mediennetzwerks NRW, einer Tochterfirma der Film- und Medienstiftung NRW.


2020 ◽  
Vol 132 (5) ◽  
pp. 1642-1652 ◽  
Author(s):  
Timothee Jacquesson ◽  
Fang-Chang Yeh ◽  
Sandip Panesar ◽  
Jessica Barrios ◽  
Arnaud Attyé ◽  
...  

OBJECTIVEDiffusion imaging tractography has allowed the in vivo description of brain white matter. One of its applications is preoperative planning for brain tumor resection. Due to a limited spatial and angular resolution, it is difficult for fiber tracking to delineate fiber crossing areas and small-scale structures, in particular brainstem tracts and cranial nerves. New methods are being developed but these involve extensive multistep tractography pipelines including the patient-specific design of multiple regions of interest (ROIs). The authors propose a new practical full tractography method that could be implemented in routine presurgical planning for skull base surgery.METHODSA Philips MRI machine provided diffusion-weighted and anatomical sequences for 2 healthy volunteers and 2 skull base tumor patients. Tractography of the full brainstem, the cerebellum, and cranial nerves was performed using the software DSI Studio, generalized-q-sampling reconstruction, orientation distribution function (ODF) of fibers, and a quantitative anisotropy–based generalized deterministic algorithm. No ROI or extensive manual filtering of spurious fibers was used. Tractography rendering was displayed in a tridimensional space with directional color code. This approach was also tested on diffusion data from the Human Connectome Project (HCP) database.RESULTSThe brainstem, the cerebellum, and the cisternal segments of most cranial nerves were depicted in all participants. In cases of skull base tumors, the tridimensional rendering permitted the visualization of the whole anatomical environment and cranial nerve displacement, thus helping the surgical strategy.CONCLUSIONSAs opposed to classical ROI-based methods, this novel full tractography approach could enable routine enhanced surgical planning or brain imaging for skull base tumors.


Sign in / Sign up

Export Citation Format

Share Document