Evaluating stability of the craniovertebral junction after unilateral C1 lateral mass resection: implications for the direct lateral approach

2021 ◽  
pp. 1-7
Author(s):  
Pranay Soni ◽  
Jeremy G. Loss ◽  
Callan M. Gillespie ◽  
Robb W. Colbrunn ◽  
Richard Schlenk ◽  
...  

OBJECTIVE The direct lateral approach is an alternative to the transoral or endonasal approaches to ventral epidural lesions at the lower craniocervical junction. In this study, the authors performed, to their knowledge, the first in vitro biomechanical evaluation of the craniovertebral junction after sequential unilateral C1 lateral mass resection. The authors hypothesized that partial resection of the lateral mass would not result in a significant increase in range of motion (ROM) and may not require internal stabilization. METHODS The authors performed multidirectional in vitro ROM testing using a robotic spine testing system on 8 fresh cadaveric specimens. We evaluated ROM in 3 primary movements (axial rotation [AR], flexion/extension [FE], and lateral bending [LB]) and 4 coupled movements (AR+E, AR+F, LB + left AR, and LB + right AR). Testing was performed in the intact state, after C1 hemilaminectomy, and after sequential 25%, 50%, 75%, and 100% C1 lateral mass resection. RESULTS There were no significant increases in occipital bone (Oc)–C1, C1–2, or Oc–C2 ROM after C1 hemilaminectomy and 25% lateral mass resection. After 50% resection, Oc–C1 AR ROM increased by 54.4% (p = 0.002), Oc LB ROM increased by 47.8% (p = 0.010), and Oc–C1 AR+E ROM increased by 65.8% (p < 0.001). Oc–C2 FE ROM increased by 7.2% (p = 0.016) after 50% resection; 75% and 100% lateral mass resection resulted in further increases in ROM. CONCLUSIONS In this cadaveric biomechanical study, the authors found that unilateral C1 hemilaminectomy and 25% resection of the C1 lateral mass did not result in significant biomechanical instability at the occipitocervical junction, and 50% resection led to significant increases in Oc–C2 ROM. This is the first biomechanical study of lateral mass resection, and future studies can serve to validate these findings.

2019 ◽  
Vol 9 (7) ◽  
pp. 697-707 ◽  
Author(s):  
Paul M. Arnold ◽  
Ivan Cheng ◽  
Jonathan A. Harris ◽  
Mir M. Hussain ◽  
Chengmin Zhang ◽  
...  

Study Design: In vitro cadaveric biomechanical study. Objective: To compare the biomechanics of integrated anchor and blade versus traditional screw fixation techniques for interbody fusion. Methods: Fifteen cadaveric cervical spines were divided into 3 equal groups (n = 5). Each spine was tested: intact, after discectomy (simulating an injury model), interbody spacer alone (S), integrated interbody spacer (iSA), and integrated spacer with lateral mass screw and rod fixation (LMS+iS). Each treatment group included integrated spacers with either screw, anchor, or blade integrated spacers. Constructs were tested in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) under pure moments (±1.5 N m). Results: Across all 3 planes, the following range of motion trend was observed: Injured > Intact > S > iSA > LMS+iS. In FE and LB, integrated anchor and blade significantly decreased motion compared with intact and injured conditions, before and after supplemental posterior fixation ( P < .05). Comparing tested devices revealed biomechanical equivalence between screw, anchor, and blade fixation methods in all loading modes ( P > .05). Conclusion: All integrated interbody devices reduced intact and injured motion; lateral mass screws and rods further stabilized the single motion segment. Comparing screw, anchor, or bladed integrated anterior cervical discectomy and fusion spacers revealed no significant differences.


2017 ◽  
Vol 127 (4) ◽  
pp. 829-836 ◽  
Author(s):  
Varun R. Kshettry ◽  
Andrew T. Healy ◽  
Robb Colbrunn ◽  
Dylan T. Beckler ◽  
Edward C. Benzel ◽  
...  

OBJECTIVEThe far lateral transcondylar approach to the ventral foramen magnum requires partial resection of the occipital condyle. Early biomechanical studies suggest that occipitocervical (OC) fusion should be considered if 50% of the condyle is resected. In clinical practice, however, a joint-sparing condylectomy has often been employed without the need for OC fusion. The biomechanics of the joint-sparing technique have not been reported. Authors of the present study hypothesized that the clinically relevant joint-sparing condylectomy would result in added stability of the craniovertebral junction as compared with earlier reports.METHODSMultidirectional in vitro flexibility tests were performed using a robotic spine-testing system on 7 fresh cadaveric spines to assess the effect of sequential unilateral joint-sparing condylectomy (25%, 50%, 75%, 100%) in comparison with the intact state by using cardinal direction and coupled moments combined with a simulated head weight “follower load.”RESULTSThe percent change in range of motion following sequential condylectomy as compared with the intact state was 5.2%, 8.1%, 12.0%, and 27.5% in flexion-extension (FE); 8.4%, 14.7%, 39.1%, and 80.2% in lateral bending (LB); and 24.4%, 31.5%, 49.9%, and 141.1% in axial rotation (AR). Only values at 100% condylectomy were statistically significant (p < 0.05). With coupled motions, however, −3.9%, 6.6%, 35.8%, and 142.4% increases in AR+F and 27.3%, 32.7%, 77.5%, and 175.5% increases in AR+E were found. Values for 75% and 100% condyle resection were statistically significant in AR+E.CONCLUSIONSWhen tested in the traditional cardinal directions, a 50% joint-sparing condylectomy did not significantly increase motion. However, removing 75% of the condyle may necessitate fusion, as a statistically significant increase in motion was found when E was coupled with AR. Clinical correlation is ultimately needed to determine the need for OC fusion.


2022 ◽  
pp. 1-9

OBJECTIVE The traditional anterior approach for multilevel severe cervical ossification of the posterior longitudinal ligament (OPLL) is demanding and risky. Recently, a novel surgical procedure—anterior controllable antedisplacement and fusion (ACAF)—was introduced by the authors to deal with these problems and achieve better clinical outcomes. However, to the authors’ knowledge, the immediate and long-term biomechanical stability obtained after this procedure has never been evaluated. Therefore, the authors compared the postoperative biomechanical stability of ACAF with those of more traditional approaches: anterior cervical discectomy and fusion (ACDF) and anterior cervical corpectomy and fusion (ACCF). METHODS To determine and assess pre- and postsurgical range of motion (ROM) (2 Nm torque) in flexion-extension, lateral bending, and axial rotation in the cervical spine, the authors collected cervical areas (C1–T1) from 18 cadaveric spines. The cyclic fatigue loading test was set up with a 3-Nm cycled load (2 Hz, 3000 cycles). All samples used in this study were randomly divided into three groups according to surgical procedures: ACDF, ACAF, and ACCF. The spines were tested under the following conditions: 1) intact state flexibility test; 2) postoperative model (ACDF, ACAF, ACCF) flexibility test; 3) cyclic loading (n = 3000); and 4) fatigue model flexibility test. RESULTS After operations were performed on the cadaveric spines, the segmental and total postoperative ROM values in all directions showed significant reductions for all groups. Then, the ROMs tended to increase during the fatigue test. No significant crossover effect was detected between evaluation time and operation method. Therefore, segmental and total ROM change trends were parallel among the three groups. However, the postoperative and fatigue ROMs in the ACCF group tended to be larger in all directions. No significant differences between these ROMs were detected in the ACDF and ACAF groups. CONCLUSIONS This in vitro biomechanical study demonstrated that the biomechanical stability levels for ACAF and ACDF were similar and were both significantly greater than that of ACCF. The clinical superiority of ACAF combined with our current results showed that this procedure is likely to be an acceptable alternative method for multilevel cervical OPLL treatment.


Neurosurgery ◽  
2001 ◽  
Vol 49 (6) ◽  
pp. 1399-1408 ◽  
Author(s):  
Andrzej Maciejczak ◽  
Michał Ciach ◽  
Maciej Radek ◽  
Andrzej Radek ◽  
Jan Awrejcewicz

ABSTRACT OBJECTIVE To determine whether the Cloward technique of cervical discectomy and fusion increases immediate postoperative stiffness of single cervical motion segment after application of interbody dowel bone graft. METHODS We measured and compared the stiffness of single-motion segments in cadaveric cervical spines before and immediately after interbody fusion with the Cloward technique. Changes in range of motion and stiffness of the C5–C6 segment were measured in a bending flexibility test (flexion, extension, lateral bending and axial rotation) before and after a Cloward procedure in 11 fresh-frozen human cadaveric specimens from the 4th through the 7th vertebrae. RESULTS The Cloward procedure produced a statistically significant increase in stiffness of the operated segment in flexion and lateral bending when compared with the intact spine. The less stiff the segment before the operation, the greater the increase in its postoperative flexural stiffness (statistically significant). The Cloward procedure produced nonuniform changes in rotational and extensional stiffness that increased in some specimens and decreased in others. CONCLUSION Our data demonstrate that Cloward interbody fusion increases immediate postoperative stiffness of an operated segment only in flexion and lateral bending in cadaveric specimens in an in vitro environment. Thus, Cloward fusion seems a relatively ineffective method for increasing the stiffness of a construct. This may add to discussion on the use of spinal instrumentation and postoperative management of patients after cervical discectomy, which varies from bracing in hard collars through immobilization in soft collars to no external orthosis.


2019 ◽  
Vol 9 (8) ◽  
pp. 826-833
Author(s):  
Ripul Panchal ◽  
Anup Gandhi ◽  
Chris Ferry ◽  
Sam Farmer ◽  
Jeremy Hansmann ◽  
...  

Study Design: In vitro biomechanical study. Objectives: The objective of this in vitro biomechanical range-of-motion (ROM) study was to evaluate spinal segmental stability following fixation with a novel anterior cervical discectomy and fusion (ACDF) device (“novel device”) that possesses integrated and modular no-profile, half-plate, and full-plate fixation capabilities. Methods: Human cadaveric (n = 18, C3-T1) specimens were divided into 3 groups (n = 6/group). Each group would receive one novel device iteration. Specimen terminal ends were potted. Each specimen was first tested in an intact state, followed by anterior discectomy (C5/C6) and iterative instrumentation. Testing order: (1) novel device (group 1, no-profile; group 2, half-plate; group 3, full-plate); (2) novel device (all groups) with lateral mass screws (LMS); (3) traditional ACDF plate + cage; (4) traditional ACDF plate + cage + LMS. A 2 N·m moment was applied in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) via a kinematic testing machine. Segmental ROM was tracked and normalized to intact conditions. Comparative statistical analyses were performed. Results: Key findings: (1) the novel half- and full-plate constructs provided comparable reduction in FE and LB ROM to that of traditional plated ACDF ( P ≥ .05); (2) the novel full-plate construct significantly exceeded all other anterior-only constructs ( P ≤ .05) in AR ROM reduction; and (3) the novel half-plate construct significantly exceeded the no-profile construct in FE ( P < .05). Conclusions: The novel ACDF device may be a versatile alternative to traditional no-profile and independent plating techniques, as it provides comparable ROM reduction in all principle motion directions, across all device iterations.


1999 ◽  
Vol 90 (1) ◽  
pp. 91-98 ◽  
Author(s):  
A. Giancarlo Vishteh ◽  
Neil R. Crawford ◽  
M. Stephen Melton ◽  
Robert F. Spetzler ◽  
Volker K. H. Sonntag ◽  
...  

Object. The authors sought to determine the biomechanics of the occipitoatlantal (occiput [Oc]—C1) and atlantoaxial (C1–2) motion segments after unilateral gradient condylectomy. Methods. Six human cadaveric specimens (skull with attached upper cervical spine) underwent nondestructive biomechanical testing (physiological loads) during flexion—extension, lateral bending, and axial rotation. Axial translation from tension to compression was also studied across Oc—C2. Each specimen served as its own control and underwent baseline testing in the intact state. The specimens were then tested after progressive unilateral condylectomy (25% resection until completion), which was performed using frameless stereotactic guidance. At Oc—C1 for all motions that were tested, mobility increased significantly compared to baseline after a 50% condylectomy. Flexion—extension, lateral bending, and axial rotation increased 15.3%, 40.8%, and 28.1%, respectively. At C1–2, hypermobility during flexion—extension occurred after a 25% condylectomy, during axial rotation after 75% condylectomy, and during lateral bending after a 100% condylectomy. Conclusions. Resection of 50% or more of the occipital condyle produces statistically significant hypermobility at Oc—C1. After a 75% resection, the biomechanics of the Oc—C1 and C1–2 motion segments change considerably. Performing fusion of the craniovertebral junction should therefore be considered if half or more of one occipital condyle is resected.


2004 ◽  
Vol 17 (3) ◽  
pp. 44-54 ◽  
Author(s):  
Denis J. DiAngelo ◽  
Kevin T. Foley ◽  
Brian R. Morrow ◽  
John S. Schwab ◽  
Jung Song ◽  
...  

An in vitro biomechanical study was conducted to compare the effects of disc arthroplasty and anterior cervical fusion on cervical spine biomechanics in a multilevel human cadaveric model. Three spine conditions were studied: harvested, single-level cervical disc arthroplasty, and single-level fusion. A programmable testing apparatus was used that replicated physiological flexion/extension, lateral bending, and axial rotation. Measurements included vertebral motion, applied load, and bending moments. Relative rotations at the superior, treated, and inferior motion segment units (MSUs) were normalized with respect to the overall rotation of those three MSUs and compared using a one-way analysis of variance with Student–Newman–Keuls test (p < 0.05). Simulated fusion decreased motion across the treated site relative to the harvested and disc arthroplasty conditions. The reduced motion at the treated site was compensated at the adjacent segments by an increase in motion. For all modes of testing, use of an artificial disc prosthesis did not alter the motion patterns at either the instrumented level or adjacent segments compared with the harvested condition, except in extension.


2020 ◽  
pp. 219256822090561
Author(s):  
Ryan DenHaese ◽  
Anup Gandhi ◽  
Chris Ferry ◽  
Sam Farmer ◽  
Randall Porter

Study Design: In vitro cadaveric biomechanical study. Objective: Biomechanically characterize a novel lateral lumbar interbody fusion (LLIF) implant possessing integrated lateral modular plate fixation (MPF). Methods: A human lumbar cadaveric (n = 7, L1-L4) biomechanical study of segmental range-of-motion stiffness was performed. A ±7.5 Nċm moment was applied in flexion/extension, lateral bending, and axial rotation using a 6 degree-of-freedom kinematics system. Specimens were tested first in an intact state and then following iterative instrumentation (L2/3): (1) LLIF cage only, (2) LLIF + 2-screw MPF, (3) LLIF + 4-screw MPF, (4) LLIF + 4-screw MPF + interspinous process fixation, and (5) LLIF + bilateral pedicle screw fixation. Comparative analysis of range-of-motion outcomes was performed between iterations. Results: Key biomechanical findings: (1) Flexion/extension range-of-motion reduction with LLIF + 4-screw MPF was significantly greater than LLIF + 2-screw MPF ( P < .01). (2) LLIF with 2-screw and 4-screw MPF were comparable to LLIF with bilateral pedicle screw fixation in lateral bending and axial rotation range-of-motion reduction ( P = 1.0). (3) LLIF + 4-screw MPF and supplemental interspinous process fixation range-of-motion reduction was comparable to LLIF + bilateral pedicle screw fixation in all directions ( P ≥ .6). Conclusions: LLIF with 4-screw MPF may provide inherent advantages over traditional 2-screw plating modalities. Furthermore, when coupled with interspinous process fixation, LLIF with MPF is a stable circumferential construct that provides biomechanical utility in all principal motions.


2002 ◽  
Vol 97 (4) ◽  
pp. 447-455 ◽  
Author(s):  
Denis J. DiAngelo ◽  
Jeffrey L. Scifert ◽  
Scott Kitchel ◽  
G. Bryan Cornwall ◽  
Bobby J. McVay

Object. An in vitro biomechanical study was conducted to determine the effects of anterior stabilization on cage-assisted lumbar interbody fusion biomechanics in a multilevel human cadaveric lumbar spine model. Methods. Three spine conditions were compared: harvested, bilateral multilevel cages (CAGES), and CAGES with bioabsorbable anterior plates (CBAP), tested under flexion—extension, lateral bending, and axial rotation. Measurements included vertebral motion, applied load, and bending/rotational moments. Application of anterior fixation decreased local motion and increased stiffness of the instrumented levels. Clinically, this spinal stability may serve to promote fusion. Conclusions. Coupled with the bioabsorbability of the plating material, the bioabsorbable anterior lumbar plating system is considered biomechanically advantageous.


2017 ◽  
Vol 59 (3) ◽  
pp. 327-335 ◽  
Author(s):  
David Volkheimer ◽  
Fabio Galbusera ◽  
Christian Liebsch ◽  
Sabine Schlegel ◽  
Friederike Rohlmann ◽  
...  

Background Several in vitro studies investigated how degeneration affects spinal motion. However, no consensus has emerged from these studies. Purpose To investigate how degeneration grading systems influence the kinematic output of spinal specimens. Material and Methods Flexibility testing was performed with ten human T12-S1 specimens. Degeneration was graded using two different classifications, one based on X-ray and the other one on magnetic resonance imaging (MRI). Intersegmental rotation (expressed by range of motion [ROM] and neutral zone [NZ]) was determined in all principal motion directions. Further, shear translation was measured during flexion/extension motion. Results The X-ray grading system yielded systematically lesser degeneration. In flexion/extension, only small differences in ROM and NZ were found between moderately degenerated motion segments, with only NZ for the MRI grading reaching statistical significance. In axial rotation, a significant increase in NZ for moderately degenerated segments was found for both grading systems, whereas the difference in ROM was significant only for the MRI scheme. Generally, the relative increases were more pronounced for the MRI classification compared to the X-ray grading scheme. In lateral bending, only relatively small differences between the degeneration groups were found. When evaluating shear translations, a non-significant increase was found for moderately degenerated segments. Motion segment segments tended to regain stability as degeneration progressed without reaching the level of statistical significance. Conclusion We found a fair agreement between the grading schemes which, nonetheless, yielded similar degeneration-related effects on intersegmental kinematics. However, as the trends were more pronounced using the Pfirrmann classification, this grading scheme appears superior for degeneration assessment.


Sign in / Sign up

Export Citation Format

Share Document