axial translation
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sajid Ali ◽  
Sikandar Khan ◽  
Arshad Jamal ◽  
Mamon M. Horoub ◽  
Mudassir Iqbal ◽  
...  

This study presented the transverse vibration of an axially moving beam with an intermediate nonlinear viscoelastic foundation. Hamilton’s principle was used to derive the nonlinear equations of motion. The finite difference and state-space methods transform the partial differential equations into a system of coupled first-order regular differential equations. The numerical modeling procedures are utilized for evaluating the effects of parameters, such as axial translation velocity, flexure rigidities of the beam, damping, and stiffness of the support on the transverse response amplitude and frequencies. It is observed that the dimensionless fundamental frequency and magnitude of axial speed had an inverse correlation. Furthermore, increasing the flexure rigidity of the beam reduced the transverse displacement, but at the same instant, fundamental frequency rises. Vibration amplitude is found to be significantly reduced with higher damping of support. It is also observed that an increase in the foundation damping leads to lower fundamental frequencies, whereas increasing the foundation stiffness results in higher frequencies.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7371
Author(s):  
Jiyoung Lee ◽  
Seunghyun Jang ◽  
Jungbin Lee ◽  
Taehan Kim ◽  
Seonghan Kim ◽  
...  

The non-invasive examination of conjunctival goblet cells using a microscope is a novel procedure for the diagnosis of ocular surface diseases. However, it is difficult to generate an all-in-focus image due to the curvature of the eyes and the limited focal depth of the microscope. The microscope acquires multiple images with the axial translation of focus, and the image stack must be processed. Thus, we propose a multi-focus image fusion method to generate an all-in-focus image from multiple microscopic images. First, a bandpass filter is applied to the source images and the focus areas are extracted using Laplacian transformation and thresholding with a morphological operation. Next, a self-adjusting guided filter is applied for the natural connections between local focus images. A window-size-updating method is adopted in the guided filter to reduce the number of parameters. This paper presents a novel algorithm that can operate for a large quantity of images (10 or more) and obtain an all-in-focus image. To quantitatively evaluate the proposed method, two different types of evaluation metrics are used: “full-reference” and “no-reference”. The experimental results demonstrate that this algorithm is robust to noise and capable of preserving local focus information through focal area extraction. Additionally, the proposed method outperforms state-of-the-art approaches in terms of both visual effects and image quality assessments.


Author(s):  
Xiaogang Qin ◽  
Yu Wang ◽  
Cuiwei Fu

Joint kinematic behaviour, i.e., joint rotation and axial translation, can partially help pipelines to accommodate abrupt ground movements, and cause leaking if joint service limit is exceeded, even without any structural failure. Kinematic behaviour of bell-spigot jointed ductile iron (DI) pipes and its influence on joint sealing capacity under abrupt transverse ground movements are investigated in this study. Firstly, a beam-on-spring finite element analysis on joint kinematics of DI pipes is conducted, in which different fault-pipe crossing positions are implemented. Based on simulated results, a modified joint kinematic solution incorporating pipe deflection and joint shear force under different fault-pipe crossing positions is proposed. Then, a Monte Carlo simulation (MCS)-based reliability assessment procedure for joint sealing capacity is developed. Sensitivity analysis is subsequently conducted to investigate the effects of uncertainties associated with initial axial translation, soil properties, and crossing positions on the joint sealing capacity, and the effects of different deterministic solutions are compared. The proposed method allows engineers to effectively evaluate how the joint sealing capacity of DI pipes changes with consideration of uncertainties when abrupt transverse ground movements are encountered.


2020 ◽  
Vol 25 (4) ◽  
pp. 506-512
Author(s):  
Gonzalo Fernando Casanova García ◽  
José Jaime Garcia Alvarez ◽  
William Alberto Carabali Satizabal

This paper reports the design of an innovative mono-lateral external fixator made of carbon fiber composite materials. The designed system can be easily assembled in comparison with commercial fixators and follows orthopedic requirements with sufficient stability and stiffness. The change of operation mode between distraction and fixation is achieved with a wedge that blocks axial translation in one position, while allows sliding with a 90º rotation. The prototypes were produced by the method of molding by compaction. A mold was developed for each part; the rail, the clamp and the cover. Each mold consisted of a cavity that gave form to the piece and a piston that exerted pressure on the composite. Mechanical tests were performed to determine the stiffness under axial compression, and anteroposterior and mediolateral bending. For comparison, tests were also performed on two Orthofix commercial systems, one with the rail made of carbon fiber and the other with an aluminum rail. The axial compression, anteroposterior and mediolateral bending stiffness of the developed system were 200.7, 13.4 and 87.0 N/mm, respectively, which were 38%, 35% and 27% lower than those obtained for the Orthofix system. However, these values were in the range of other similar systems reported in the literature. Therefore, the developed system presented promising results and may be clinically evaluated.


2020 ◽  
pp. 107754632093711
Author(s):  
Bo Song ◽  
Kun Cai ◽  
Jiao Shi ◽  
Qing-Hua Qin

We propose a model of a nanostructure which can transform an input rotation into an output oscillation. In the model, the rotor has two identical internally hydrogenated deformable parts. The mechanism is that the rotation-induced centrifugal force and van der Waals force drive the recoverable deformation of the hydrogenated deformable parts, which gives rise to the axial translation of the free end of the rotor. Once the two hydrogenated deformable parts deform periodically, the free end of the rotor oscillates periodically in the axial direction. Molecular dynamics simulations are conducted to reveal the dynamic response of the system at low temperature. Four main types of deformation and the first three orders of vibration responses of the hydrogenated deformable parts are analyzed. Synchronous breathing vibration of the two hydrogenated deformable parts produces ideal oscillation with large amplitude. Asynchronous axial vibration of the hydrogenated deformable parts reduces the oscillation amplitude or produces beat vibration. The way to control the amplitude of the axial oscillation/vibration is given.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1969
Author(s):  
Bo Song ◽  
Jiao Shi ◽  
Jinbao Wang ◽  
Jianhu Shen ◽  
Kun Cai

It was discovered that large-amplitude axial oscillation can occur on a rotor with an internally hydrogenated deformable part (HDP) in a rotation–translation nanoconverter. The dynamic outputs of the system were investigated using molecular dynamics simulations. When an input rotational frequency (100 GHz > ω > 20 GHz) was applied at one end of the rotor, the HDP deformed under the centrifugal and van der Waals forces, which simultaneously led to the axial translation of the other end of the rotor. Except at too high an input rotational frequency (e.g., >100 GHz), which led to eccentric rotation and even collapse of the system, the present system could generate a periodic axial oscillation with an amplitude above 0.5 nm at a temperature below 50 K. In other ranges of temperature and amplitude, the oscillation dampened quickly due to the drastic thermal vibrations of the atoms. Furthermore, the effects of the hydrogenation scheme and the length of HDP on the equilibrium position, amplitude, and frequency of oscillation were investigated. The conclusions can be applied to the design of an ideal nano-oscillator based on the present rotation–translation converter model.


2020 ◽  
Vol 138 ◽  
pp. 106520
Author(s):  
Daniel E. Kakaley ◽  
Russell E. Altieri ◽  
Gregory D. Buckner

2020 ◽  
Vol 195 ◽  
pp. 01033
Author(s):  
Vincenzo Butticè ◽  
Alessio Ferrari ◽  
Carmine G. Gragnano ◽  
Guido Gottardi

The paper presents the results of an experimental campaign aimed at characterizing the hydro-mechanical behaviour of a sandy silt from a river embankment. Due to continuous river level fluctuations and changing climatic and environmental conditions, flood embankment materials experience frequent variations in degree of saturation and suction values. Such variations strongly impact the earthwork performance both in terms of seepage and stability conditions. For these reasons, a detailed characterization of the material behaviour in unsaturated conditions was carried out. Experiments were designed in order to highlight the response of the involved soil in terms of changes in matric suction and confining stress. All tests were performed on undisturbed samples from the embankment. To cover the suction range, which is expected to be significant for the material and assessed through field monitoring, a combination of several suction-control and suction-measurement techniques was used (e.g. negative water column, axial translation, tensiometers). Obtained results enabled (i) to quantify the evolution of the yield stress with suction, (ii) to assess the collapse upon wetting behaviour, (iii) to get detailed information on the water retention behaviour and (iv) to define the relative permeability of the soil. This extensive characterization work serves as a basis for the analysis of the embankment response following river level variations, the final purpose of the research being to establish a reliable methodology and a feasible procedure for the realistic assessment of the safety margins under transient seepage.


2019 ◽  
Vol 879 ◽  
pp. 579-603 ◽  
Author(s):  
Kohei Kunii ◽  
Takahiro Ishida ◽  
Yohann Duguet ◽  
Takahiro Tsukahara

Annular Couette flow is the flow between two coaxial cylinders driven by the axial translation of the inner cylinder. It is investigated using direct numerical simulation in long domains, with an emphasis on the laminar–turbulent coexistence regime found for marginally low values of the Reynolds number. Three distinct flow regimes are demonstrated as the radius ratio $\unicode[STIX]{x1D702}$ is decreased from 0.8 to 0.5 and finally to 0.1. The high-$\unicode[STIX]{x1D702}$ regime features helically shaped turbulent patches coexisting with laminar flow, as in planar shear flows. The moderate-$\unicode[STIX]{x1D702}$ regime does not feature any marked laminar–turbulent coexistence. In an effort to discard confinement effects, proper patterning is, however, recovered by artificially extending the azimuthal span beyond $2\unicode[STIX]{x03C0}$. Eventually, the low-$\unicode[STIX]{x1D702}$ regime features localised turbulent structures different from the puffs commonly encountered in transitional pipe flow. In this new coexistence regime, turbulent fluctuations are surprisingly short-ranged. Implications are discussed in terms of phase transition and critical scaling.


2018 ◽  
Vol 44 (2) ◽  
pp. 98-102
Author(s):  
Md. Anowarul Islam ◽  
Fahad Goni ◽  
Qumruzzam Parvez

As sufficient study not available in this subcontinent about correction of idiopathic kyphoscoliosis by axial translation technique, a group of patients of Adolescent Idiopathic Scoliosis (AIS) was selected to evaluate the outcome of rod rotation technique. The curve correction with more screw on the concave site was assessed, patient satisfaction and correction of cobb angle. Post operative radiological and functional outcome were assessed. Twenty consecutive patients (8 males, 12 females) with an age range from 10 to 24 years. Post operatively all were followed-up for 18 months. All patients were under went pedicle screw instrumentation through posterior approach. More screw inserted in the concave side. X-ray evaluation done by pre-operative and 1, 3, 6 ,12 and 18 months after surgery. Scoliosis Research Society (SRS) questionnaire was done for clinical evaluation. Radiological evaluation done by preoperative cobb angle was significantly reduced in postoperative period. The mean postoperative SRS scores were improved from 3.38 to 4.13. These results were statistically significant and so it may be concluded that the axial translation technique with more screw in the concave side is ideal technique with good postoperative outcome both clinically and radiologically.


Sign in / Sign up

Export Citation Format

Share Document