scholarly journals Reinnervation of the biceps in C5–7 brachial plexus avulsion injuries: results after distal bypass surgery

2004 ◽  
Vol 16 (5) ◽  
pp. 1-4 ◽  
Author(s):  
Stefano Ferraresi ◽  
Debora Garozzo ◽  
Paolo Buffatti

Object The authors report various techniques, and their results, after performing median and ulnar nerve transfers to reanimate the biceps muscle in C5–7 avulsion-related brachial plexus injuries (BPIs). Methods Forty-three adult patients with BPIs of the upper-middle plexus underwent reinnervation of the biceps muscle; neurotization of the musculocutaneous nerve was performed using fascicles from the ulnar nerve (39 cases) and the median nerve (four cases). The different techniques included sectioning, rerouting, and direct suturing of the entire musculocutaneous nerve (35 cases); direct reinnervation of the motor branches of the musculocutaneous nerve (three cases); and reinnervation using small grafts to the motor fascicles that enter the biceps muscle (five cases). Elbow flexion recovery ranged from M2 to M4+, according to the patient's age and the level of integrity of the hand. No surgery-related failure occurred. No significant difference in outcome was related to any of the technical variants. In patients younger than age 45 years and exhibiting a normal hand function a score of M4 or better was always achieved. On average, reinnervation occurred 6 months after surgery. There was no clinical evidence of donor nerve dysfunction. Conclusions When accurate selection criteria are met, the results after this type of neurotization have proved excellent.

2004 ◽  
Vol 16 (5) ◽  
pp. 313-318
Author(s):  
Thomas H. Tung ◽  
Christine B. Novak ◽  
Susan E. Mackinnon

Object In this study the authors evaluated the outcome in patients with brachial plexus injuries who underwent nerve transfers to the biceps and the brachialis branches of the musculocutaneous nerve. Methods The charts of eight patients who underwent an ulnar nerve fascicle transfer to the biceps branch of the musculocutaneous nerve and a separate transfer to the brachialis branch were retrospectively reviewed. Outcome was assessed using the Medical Research Council (MRC) grade to classify elbow flexion strength in conjunction with electromyography (EMG). The mean patient age was 26.4 years (range 16–45 years) and the mean time from injury to surgery was 3.8 months (range 2.5–7.5 months). Recovery of elbow flexion was MRC Grade 4 in five patients, and Grade 4+in three. Reinnervation of both the biceps and brachialis muscles was confirmed on EMG studies. Ulnar nerve function was not downgraded in any patient. Conclusions The use of nerve transfers to reinnervate the biceps and brachialis muscle provides excellent elbow flexion strength in patients with brachial plexus nerve injuries.


2018 ◽  
Vol 37 (04) ◽  
pp. 285-290
Author(s):  
Mario Siqueira ◽  
Roberto Martins ◽  
Wilson Faglioni Junior ◽  
Luciano Foroni ◽  
Carlos Heise

Objective To present the functional outcomes of distal nerve transfer techniques for restoration of elbow flexion after upper brachial plexus injury. Method The files of 78 adult patients with C5, C6, ± C7 lesions were reviewed. The attempt to restore elbow flexion was made by intraplexus distal nerve transfers using a fascicle of the ulnar nerve (group A, n = 43), or a fascicle of the median nerve (group B, n = 16) or a combination of both (group C, n = 19). The result of the treatment was defined based on the British Medical Research Council grading system: muscle strength < M3 was considered a poor result. Results The global incidence of good/excellent results with these nerve transfers was 80.7%, and for different surgical techniques (groups A, B, C), it was 86%, 56.2% and 100% respectively. Patients submitted to ulnar nerve transfer or double transfer (ulnar + median fascicles transfer) had a better outcome than those submitted to median nerve transfer alone (p < 0.05). There was no significant difference between the outcome of ulnar transfer and double transfer. Conclusion In cases of traumatic injury of the upper brachial plexus, good and excelent results in the restoration of elbow flexion can be obtained using distal nerve transfers.


2003 ◽  
Vol 98 (2) ◽  
pp. 313-318 ◽  
Author(s):  
Thomas H. Tung ◽  
Christine B. Novak ◽  
Susan E. Mackinnon

Object. In this study the authors evaluated the outcome in patients with brachial plexus injuries who underwent nerve transfers to the biceps and the brachialis branches of the musculocutaneous nerve. Methods. The charts of eight patients who underwent an ulnar nerve fascicle transfer to the biceps branch of the musculocutaneous nerve and a separate transfer to the brachialis branch were retrospectively reviewed. Outcome was assessed using the Medical Research Council (MRC) grade to classify elbow flexion strength in conjunction with electromyography (EMG). The mean patient age was 26.4 years (range 16–45 years) and the mean time from injury to surgery was 3.8 months (range 2.5–7.5 months). Recovery of elbow flexion was MRC Grade 4 in five patients, and Grade 4+ in three. Reinnervation of both the biceps and brachialis muscles was confirmed on EMG studies. Ulnar nerve function was not downgraded in any patient. Conclusions. The use of nerve transfers to reinnervate the biceps and brachialis muscle provides excellent elbow flexion strength in patients with brachial plexus nerve injuries.


Hand ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 621-626 ◽  
Author(s):  
Hyuma A. Leland ◽  
Beina Azadgoli ◽  
Daniel J. Gould ◽  
Mitchel Seruya

Background: The purpose of this study was to systematically review outcomes following intercostal nerve (ICN) transfer for restoration of elbow flexion, with a focus on identifying the optimal number of nerve transfers. Methods: A systematic review was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to identify studies describing ICN transfers to the musculocutaneous nerve (MCN) for traumatic brachial plexus injuries in patients 16 years or older. Demographics were recorded, including age, time to operation, and level of brachial plexus injury. Muscle strength was scored based upon the British Medical Research Council scale. Results: Twelve studies met inclusion criteria for a total of 196 patients. Either 2 (n = 113), 3 (n = 69), or 4 (n = 11) ICNs were transferred to the MCN in each patient. The groups were similar with regard to patient demographics. Elbow flexion ≥M3 was achieved in 71.3% (95% confidence interval [CI], 61.1%-79.7%) of patients with 2 ICNs, 67.7% (95% CI, 55.3%-78.0%) of patients with 3 ICNs, and 77.0% (95% CI, 44.9%-93.2%) of patients with 4 ICNs ( P = .79). Elbow flexion ≥M4 was achieved in 51.1% (95% CI, 37.4%-64.6%) of patients with 2 ICNs, 42.1% (95% CI, 29.5%-55.9%) of patients with 3 ICNs, and 48.4% (95% CI, 19.2%-78.8%) of patients with 4 ICNs ( P = .66). Conclusions: Previous reports have described 2.5 times increased morbidity with each additional ICN harvest. Based on the equivalent strength of elbow flexion irrespective of the number of nerves transferred, 2 ICNs are recommended to the MCN to avoid further donor-site morbidity.


2004 ◽  
Vol 101 (5) ◽  
pp. 770-778 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flávio Ghizoni

Object. The goal of this study was to evaluate outcomes in patients with brachial plexus avulsion injuries who underwent contralateral motor rootlet and ipsilateral nerve transfers to reconstruct shoulder abduction/external rotation and elbow flexion. Methods. Within 6 months after the injury, 24 patients with a mean age of 21 years underwent surgery in which the contralateral C-7 motor rootlet was transferred to the suprascapular nerve by using sural nerve grafts. The biceps motor branch or the musculocutaneous nerve was repaired either by an ulnar nerve fascicular transfer or by transfer of the 11th cranial nerve or the phrenic nerve. The mean recovery in abduction was 90° and 92° in external rotation. In cases of total palsy, only two patients recovered external rotation and in those cases mean external rotation was 70°. Elbow flexion was achieved in all cases. In cases of ulnar nerve transfer, the muscle scores were M5 in one patient, M4 in six patients, and M3+ in five patients. Elbow flexion repair involving the use of the 11th cranial nerve resulted in a score of M3+ in five patients and M4 in two patients. After surgery involving the phrenic nerve, two patients received a score of M3+ and two a score of M4. Results were clearly better in patients with partial lesions and in those who were shorter than 170 cm (p < 0.01). The length of the graft used in motor rootlet transfers affected only the recovery of external rotation. There was no permanent injury at the donor sites. Conclusions. Motor rootlet transfer represents a reliable and potent neurotizer that allows the reconstruction of abduction and external rotation in partial injuries.


2020 ◽  
Vol 45 (8) ◽  
pp. 818-826
Author(s):  
Dawn Sinn Yii Chia ◽  
Kazuteru Doi ◽  
Yasunori Hattori ◽  
Sotetsu Sakamoto

We compared the outcomes of 23 partial ulnar nerve and 15 intercostal nerve transfers for elbow flexion reconstruction in patients with C56 or C567 brachial plexus injuries using manual muscle power, dynamometric measurements of elbow flexion strength and electromyography. The range of elbow flexion and muscle strength recovery to Grade 3 or 4 were comparable between the two groups. The patients with C567 injuries had significantly stronger eccentric contraction after the partial ulnar nerve transfer than after the intercostal nerve transfer ( p < 0.05). Electromyography of individual muscles demonstrated that the patients with partial ulnar nerve transfers were unable to voluntarily isolate biceps contraction and recruited forearm flexors and extensors. The patients after partial ulnar nerve transfer had significantly more activity of the forearm muscles during concentric elbow flexion than after intercostal nerve transfers ( p < 0.05). We conclude that partial ulnar nerve transfers were superior to intercostal nerve transfers when assessed quantitatively with the dynamometer to evaluate elbow flexion, although simultaneous recruitment of forearm muscles may have contributed to the increased elbow flexion strength in the patients with the partial ulnar nerve transfer. Level of evidence: III


2020 ◽  
Vol 53 (02) ◽  
pp. 260-265
Author(s):  
Anil Bhatia ◽  
Aditi Kulkarni ◽  
Pablo Zancolli ◽  
Raul Rodriguez Martinez ◽  
Jorge Clifton ◽  
...  

Abstract Introduction Posttraumatic brachial plexus injuries are devastating, as the brain and spinal cord are disconnected from the upper limb. Restoration of elbow flexion has been widely recognized as the primary objective of nerve reconstruction. In the absence of utilizable (ruptured) root stumps in the neck, one has recourse only to nerve transfers. The direct transfer of intercostal nerves to the musculocutaneous nerve is one of the techniques that has been commonly employed over the past four decades. However, the outcomes of this procedure cited in the literature have varied considerably. The patient’s age and the delay from the accident to surgery have been known to affect the results of nerve reconstruction operations. The authors present a study of the effect of these parameters on intercostal nerve transfers. Methods The data of 232 patients with total and near-total brachial plexus injuries treated by the senior author between April 1995 and December 2015 was examined. Intercostal nerve transfers were used for the restoration of biceps function in each of these patients. The outcomes were tabulated, and the correlation with the age and the delay before surgery was examined. Results The strength of the biceps regained was better in patients younger than 30 years old and those operated upon earlier than 6 months from the accident. The differences in outcomes were found to be statistically significant (p = 0.001 for preoperative delay and p < 0.005 for the patient’s age). Conclusion The results give clear proof of the significant effect of the age and preoperative delay on the outcomes of intercostal nerve transfers for restoration of biceps function. These findings can serve as pointers to help the surgeon in choosing the method of nerve reconstruction in a given case.


2011 ◽  
Vol 68 (suppl_1) ◽  
pp. ons64-ons67 ◽  
Author(s):  
Charles P Toussaint ◽  
Eric L Zager

Abstract BACKGROUND: Injuries to the upper trunk of the brachial plexus are debilitating, affecting primarily shoulder abduction and elbow flexion. Treatment is aimed at restoring shoulder stabilization, shoulder abduction, and elbow flexion and may be accomplished by nerve grafting, nerve transfer, or functional muscular transfer. OBJECTIVE: To describe the double fascicular nerve transfer with the goal of restoring elbow flexion. METHODS: The double fascicular nerve transfer involves transferring an ulnar nerve fascicle to the musculocutaneous nerve innervating the biceps muscle and a median nerve fascicle transfer to a branch of musculocutaneous nerve supplying the brachialis muscle. RESULTS: The double fascicular nerve transfer is effective in restoring elbow flexion after severe upper-trunk brachial plexus injuries. CONCLUSION: Advantages of this procedure are that the nerve repair is done very close to the target muscle for reinnervation, so time to reinnervation is minimized, and the surgery takes place distal to the site of injury in nontraumatized tissue.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-328 ◽  
Author(s):  
A. SUNGPET ◽  
C. SUPHACHATWONG ◽  
V. KAWINWONGGOWIT ◽  
A. PATRADUL

Thirty-six patients with avulsions of upper roots of the brachial plexus underwent transfer of a single fascicle from the ulnar nerve to the proximal motor branch of the biceps muscle to restore elbow flexion. The mean period of follow-up was 22 months. The average reinnervation time for the biceps muscle was 3.3 months. Thirty-four patients achieved biceps strength of Medical Research Council grade 3 or better. The operative results in the patients with C5, C6 avulsions were better than those with C5, C6, C7 avulsions. At the last follow-up examination, grip strength, pinch strength, moving two-point discrimination and the strength of flexion of the wrist on the affected side was not worse than before surgery in any patient.


Sign in / Sign up

Export Citation Format

Share Document