Effect of chemical sympathectomy on cerebral blood flow in rats

1991 ◽  
Vol 75 (6) ◽  
pp. 906-910 ◽  
Author(s):  
Hidenori Kobayashi ◽  
Minoru Hayashi ◽  
Hirokazu Kawano ◽  
Yuji Handa ◽  
Masanori Kabuto ◽  
...  

✓ Thirty male Wistar rats, weighing 350 to 400 gm each, received stereotactic injections of 6-hydroxydopamine (300 µg/kg) into the left lateral ventricle. The same amount of saline was injected into a control group of 15 rats. Seven days after this procedure, cerebral blood flow (CBF) was measured by the hydrogen clearance method. A hypertensive condition at a mean arterial pressure of about 160 mm Hg was maintained for 1 hour by intravenous infusion of phenylephrine. In the 6-hydroxydopamine-treated group, CBF increased significantly after the elevation of systemic blood pressure compared with that in the control group, and cerebral autoregulation was impaired. After a 1-hour study, the specific gravity of the cerebral tissue in the treated group significantly decreased; electron microscopic studies at that time revealed brain edema. It is suggested that depletion of brain noradrenaline levels causes a disturbance in cerebral microvascular tone and renders the cerebral blood vessels more vulnerable to hypertension.

1998 ◽  
Vol 89 (3) ◽  
pp. 454-459 ◽  
Author(s):  
Ingunn R. Rise ◽  
Ole J. Kirkeby

Object. In this study the authors tested the hypothesis that hemorrhagic hypotension and high intracranial pressure induce an increase in cerebrovascular resistance that is caused by sympathetic compensatory mechanisms and can be modified by α-adrenergic blockade. Methods. Continuous measurements of cerebral blood flow were obtained using laser Doppler microprobes placed in the cerebral cortex in anesthetized pigs during induced hemorrhagic hypotension and high cerebrospinal fluid pressure. Eight pigs received 2 mg/kg phentolamine in 10 ml saline, and 13 pigs served as control animals. During high intracranial pressure occurring after blood loss, cerebral perfusion pressure (CPP) (p < 0.01) and cerebral blood flow (p < 0.01) decreased in both groups. Cerebrovascular resistance increased (p < 0.05) in the control group and decreased < 0.005) in the phentolamine-treated group. The cerebrovascular resistance was significantly lower in the phentolamine-treated group (p < 0.05) than in the control group. Cerebrovascular resistance increased at lower CPPs in the control group (linear correlation, r = 0.39, p < 0.01) and decreased with decreasing CPP in the phentolamine-treated group (linear correlation, r = 0.76, p < 0.001). Conclusions. This study shows that the deleterious effects on cerebral hemodynamics induced by blood loss in combination with high intracranial pressure are inhibited by α-adrenergic blockade. This suggests that these responses are caused by α-adrenergically mediated cerebral vasoconstriction.


1994 ◽  
Vol 80 (5) ◽  
pp. 857-864 ◽  
Author(s):  
Joseph M. Darby ◽  
Howard Yonas ◽  
Elizabeth C. Marks ◽  
Susan Durham ◽  
Robert W. Snyder ◽  
...  

✓ The effects of dopamine-induced hypertension on local cerebral blood flow (CBF) were investigated in 13 patients suspected of suffering clinical vasospasm after aneurysmal subarachnoid hemorrhage (SAH). The CBF was measured in multiple vascular territories using xenon-enhanced computerized tomography (CT) with and without dopamine-induced hypertension. A territorial local CBF of 25 ml/100 gm/min or less was used to define ischemia and was identified in nine of the 13 patients. Raising mean arterial blood pressure from 90 ± 11 mm Hg to 111 ± 13 mm Hg (p < 0.05) via dopamine administration increased territorial local CBF above the ischemic range in more than 90% of the uninfarcted territories identified on CT while decreasing local CBF in one-third of the nonischemic territories. Overall, the change in local CBF after dopamine-induced hypertension was correlated with resting local CBF at normotension and was unrelated to the change in blood pressure. Of the 13 patients initially suspected of suffering clinical vasospasm, only 54% had identifiable reversible ischemia. The authors conclude that dopamine-induced hypertension is associated with an increase in flow in patients with ischemia after SAH. However, flow changes associated with dopamine-induced hypertension may not be entirely dependent on changes in systemic blood pressure. The direct cerebrovascular effects of dopamine may have important, yet unpredictable, effects on CBF under clinical pathological conditions. Because there is a potential risk of dopamine-induced ischemia, treatment may be best guided by local CBF measurements.


1992 ◽  
Vol 76 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Reizo Shirane ◽  
Philip R. Weinstein

✓ The effects of pretreatment with mannitol on local cerebral blood flow (CBF) after permanent or temporary global cerebral ischemia were evaluated with 14C-iodoantipyrine autoradiography in rats under halothane-N2O endotracheal anesthesia. Blood pressure, pulse rate, arterial blood gas levels, and electroencephalographic (EEG) tracings were monitored throughout the experiments. After permanent occlusion of the basilar artery and both external carotid and pterygopalatine arteries, severe global ischemia was induced by permanent occlusion of the common carotid arteries (CCA's) or by a 30-minute temporary CCA occlusion followed by 5 minutes of reperfusion. Intravenous mannitol (25%, 1 gm/kg) or saline solution was administered 5 minutes before occlusion of the CCA's. Cerebral blood flow was measured in 24 anatomical regions. The EEG tracings flattened within 2 to 3 minutes after the onset of ischemia, and no recovery was observed during reperfusion. In the mannitol-treated rats and the saline-treated controls, autoradiographic studies after permanent occlusion showed no CBF in the forebrain or cerebellum, although brain-stem and spinal cord CBF values were normal. After 5 minutes of reperfusion, CBF in the cortex, basal ganglia, and white matter was 100% to 200% higher in mannitol-treated rats and 50% to 100% higher in saline-injected rats than in the nonischemic anesthetized control group. Heterogeneously distributed areas of no-reflow were seen in all saline-injected rats but were observed in none of the mannitol-treated rats. Pretreatment with mannitol prevented postischemic obstruction of the microcirculation during 5 minutes of recirculation after 30 minutes of severe temporary ischemia, but the EEG signals did not recover. Further studies of the functional and morphological responses to longer periods of postischemic recirculation are needed to verify the extent to which these mannitol-induced effects are protective.


1993 ◽  
Vol 79 (3) ◽  
pp. 363-368 ◽  
Author(s):  
Tadahiko Shiozaki ◽  
Hisashi Sugimoto ◽  
Mamoru Taneda ◽  
Hiroyoshi Yoshida ◽  
Atsushi Iwai ◽  
...  

✓ Recent experimental studies have demonstrated that mild hypothermia at about 34°C can be effective in the control of intracranial hypertension. A randomized controlled study of mild hypothermia was carried out in 33 severely head-injured patients. All patients fulfilled the following criteria: 1) persistent intracranial pressure (ICP) greater than 20 mm Hg despite fluid restriction, hyperventilation, and high-dose barbiturate therapy; 2) an ICP lower than the mean arterial blood pressure; and 3) a Glasgow Coma Scale score of 8 or less. The patients were divided into two groups: one received mild hypothermia (16 patients) and one served as a control group (17 patients). Mild hypothermia significantly reduced the ICP and increased the cerebral perfusion pressure. Eight patients (50%) in the hypothermia group and three (18%) in the control group survived (p < 0.05), while five (31%) in the hypothermia group and 12 (71%) in the control group died of uncontrollable intracranial hypertension (p < 0.05). In five patients in the hypothermia group, cerebral blood flow was measured by the hydrogen clearance method and arteriojugular venous oxygen difference was evaluated before and during mild hypothermia. Mild hypothermia significantly decreased the cerebral blood flow, arteriojugular venous oxygen difference, and cerebral metabolic rate of oxygen (p < 0.01). The results of this preliminary investigation suggest that mild hypothermia is a safe and effective method to control traumatic intracranial hypertension and to improve mortality and morbidity rates.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


2002 ◽  
Vol 97 (5) ◽  
pp. 1179-1183 ◽  
Author(s):  
Basar Atalay ◽  
Hayrunnisa Bolay ◽  
Turgay Dalkara ◽  
Figen Soylemezoglu ◽  
Kamil Oge ◽  
...  

Object. The goal of this study was to investigate whether stimulation of trigeminal afferents in the cornea could enhance cerebral blood flow (CBF) in rats after they have been subjected to experimental subarachnoid hemorrhage (SAH). Cerebral vasospasm following SAH may compromise CBF and increase the risks of morbidity and mortality. Currently, there is no effective treatment for SAH-induced vasospasm. Direct stimulation of the trigeminal nerve has been shown to dilate constricted cerebral arteries after SAH; however, a noninvasive method to activate this nerve would be preferable for human applications. The authors hypothesized that stimulation of free nerve endings of trigeminal sensory fibers in the face might be as effective as direct stimulation of the trigeminal nerve. Methods. Autologous blood obtained from the tail artery was injected into the cisterna magna of 10 rats. Forty-eight and 96 hours later (five rats each) trigeminal afferents were stimulated selectively by applying transcorneal biphasic pulses (1 msec, 3 mA, and 30 Hz), and CBF enhancements were detected using laser Doppler flowmetry in the territory of the middle cerebral artery. Stimulation-induced changes in cerebrovascular parameters were compared with similar parameters in sham-operated controls (six rats). Development of vasospasm was histologically verified in every rat with SAH. Corneal stimulation caused an increase in CBF and blood pressure and a net decrease in cerebrovascular resistance. There were no significant differences between groups for these changes. Conclusions. Data from the present study demonstrate that transcorneal stimulation of trigeminal nerve endings induces vasodilation and a robust increase in CBF. The vasodilatory response of cerebral vessels to trigeminal activation is retained after SAH-induced vasospasm.


1982 ◽  
Vol 56 (5) ◽  
pp. 706-710 ◽  
Author(s):  
Wise Young ◽  
Vincent DeCrescito ◽  
John J. Tomasula

✓ The hypothesis that the paravertebral sympathetic ganglia play a role in spinal blood flow regulation was tested in cats. Five cats were subjected to paravertebral sympathectomy, two to combined sympathectomy-adrenalectomy, three to adrenalectomy alone, and five controls received no treatment. Laminectomy was carried out to expose the T4–10 cord, and autoregulation was tested by measuring blood flow from the lateral columns with the hydrogen clearance technique during manipulation of systemic pressure with intravenous saline infusion and nitroprusside administration. The cord was then contused at T-7 with a 400 gm-cm impact injury. Posttraumatic blood flow was recorded, and neurophysiological function was assessed with somatosensory evoked potential (SEP) monitoring. Before injury, blood flow in the untreated (control) group had no consistent relationship with mean systemic pressure over the range 80 to 160 mm Hg. In contrast, in all cats with paravertebral sympathectomy, whether accompanied by adrenalectomy or not, blood flows increased with systemic pressure (correlation coefficient 0.86, p < 0.01). After injury, the control and adrenalectomized cats showed blood flow decreases of > 60% to 4 to 6 ml/100 gm/min (p < 0.01) by 2 to 3 hours. However, cats with paravertebral sympathectomy maintained blood flow above 9 ml/100 gm/min for up to 3 hours after injury. All the sympathectomized cats recovered their SEP by the 3rd hour after injury, compared with none of the controls. Thus, in the absence of the paravertebral sympathetic ganglia, spinal blood flow autoregulation was impaired and the typical posttraumatic loss in blood flow did not occur. The sympathectomy also protected the spinal cords from the neurophysiological loss usually seen in 400 gm-cm injury. The data suggest the need for caution in using acetylcholine blocking agents to paralyze animals in experimental spinal injury, since these agents alter sympathetic activity and may influence the injury process. The spinal cord is an excellent model in which to investigate sympathetic regulation of central nervous system blood flow.


1986 ◽  
Vol 65 (5) ◽  
pp. 693-696 ◽  
Author(s):  
W. Richard Marsh ◽  
Robert E. Anderson ◽  
Thoralf M. Sundt

✓ The adverse effect of a minimal cerebral blood flow (CBF) in models of global ischemia has been noted by many investigators. One factor believed important in this situation is the level of blood glucose, since a continued supply of this metabolite results in increased tissue lactate, decreased brain pH, and increased cell damage. The authors have extended these observations to a model of focal incomplete ischemia. Brain pH was measured in fasted squirrel monkeys in regions of focal incomplete ischemia after transorbital occlusion of the middle cerebral artery (MCA). In both control and hyperglycemic animals, CBF was reduced to less than 30% of baseline. At 3 hours after MCA occlusion, brain pH in the control group was 6.66 ± 0.68 as compared to 6.27 ± 0.26 in the glucose-treated group. This difference was statistically significant by Student's unpaired t-test (p < 0.05). Thus, hyperglycemia results in decreased tissue pH in regions of focal incomplete cerebral ischemia in monkeys.


2000 ◽  
Vol 92 (6) ◽  
pp. 1009-1015 ◽  
Author(s):  
Seiji Yamamoto ◽  
Weiyu Teng ◽  
Shigeru Nishizawa ◽  
Takeharu Kakiuchi ◽  
Hideo Tsukada

Object. The hydroxyl radical scavenger (±)-N,N′-propylenedinicotinamide (AVS) has been shown to ameliorate the occurrence of vasospasm following experimental subarachnoid hemorrhage (SAH) and to reduce the incidence of delayed ischemic neurological deficits (DINDs) in patients with SAH. The authors investigated whether prophylactic administration of AVS could improve cerebral blood flow (CBF) and cerebral glucose utilization (CGU) following SAH in rats.Methods. Anesthetized rats were subjected to intracisternal injection of blood (SAH group) or saline (control group). Either AVS (1 mg/kg/min) or saline (vehicle group) was continuously injected into the rat femoral vein. Forty-eight hours later, positron emission tomography scanning was used with the tracers 15O-H2O and 18F-2-fluoro-d-glucose to analyze quantitatively CBF and CGU, respectively, in the frontoparietal and occipital regions (12 regions of interest/group).In SAH rats receiving only vehicle, CBF decreased significantly (p < 0.05, Tukey's test) and CGU tended to decrease, compared with values obtained in control (non-SAH) rats receiving vehicle. In rats that were subjected to SAH, administration of AVS significantly (p < 0.05, Tukey's test) improved CBF and CGU in both the frontoparietal and occipital regions compared with administration of vehicle alone.Conclusions. Prophylactic administration of AVS improves CBF and CGU in the rat brain subjected to SAH, and can be a good pharmacological treatment for the prevention of DINDs following SAH.


1985 ◽  
Vol 63 (6) ◽  
pp. 937-943 ◽  
Author(s):  
David J. Boarini ◽  
Neal F. Kassell ◽  
James A. Sprowell ◽  
Julie J. Olin ◽  
Hans C. Coester

✓ Profound arterial hypotension is à commonly used adjunct in surgery for aneurysms and arteriovenous malformations. Hyperventilation with hypocapnia is also used in these patients to increase brain slackness. Both measures reduce cerebral blood flow (CBF). Of concern is whether CBF is reduced below ischemic thresholds when both techniques are employed together. To determine this, 12 mongrel dogs were anesthetized with morphine, nitrous oxide, and oxygen, and then paralyzed with pancuronium and hyperventilated. Arterial pCO2 was controlled by adding CO2 to the inspired gas mixture. Cerebral blood flow was measured at arterial pCO2 levels of 40 and 20 mm Hg both before and after mean arterial pressure was lowered to 40 mm Hg with adenosine enhanced by dipyridamole. In animals where PaCO2 was reduced to 20 mm Hg and mean arterial pressure was reduced to 40 mm Hg, cardiac index decreased 42% from control and total brain blood flow decreased 45% from control while the cerebral metabolic rate of oxygen was unchanged. Hypocapnia with hypotension resulted in small but statistically significant reductions in all regional blood flows, most notably in the brain stem. The reported effects of hypocapnia on CBF during arterial hypotension vary depending on the hypotensive agents used. Profound hypotension induced with adenosine does not eliminate CO2 reactivity, nor does it lower blood flow to ischemic levels in this model, even in the presence of severe hypocapnia.


Sign in / Sign up

Export Citation Format

Share Document