Effect of sympathectomy on spinal blood flow autoregulation and posttraumatic ischemia

1982 ◽  
Vol 56 (5) ◽  
pp. 706-710 ◽  
Author(s):  
Wise Young ◽  
Vincent DeCrescito ◽  
John J. Tomasula

✓ The hypothesis that the paravertebral sympathetic ganglia play a role in spinal blood flow regulation was tested in cats. Five cats were subjected to paravertebral sympathectomy, two to combined sympathectomy-adrenalectomy, three to adrenalectomy alone, and five controls received no treatment. Laminectomy was carried out to expose the T4–10 cord, and autoregulation was tested by measuring blood flow from the lateral columns with the hydrogen clearance technique during manipulation of systemic pressure with intravenous saline infusion and nitroprusside administration. The cord was then contused at T-7 with a 400 gm-cm impact injury. Posttraumatic blood flow was recorded, and neurophysiological function was assessed with somatosensory evoked potential (SEP) monitoring. Before injury, blood flow in the untreated (control) group had no consistent relationship with mean systemic pressure over the range 80 to 160 mm Hg. In contrast, in all cats with paravertebral sympathectomy, whether accompanied by adrenalectomy or not, blood flows increased with systemic pressure (correlation coefficient 0.86, p < 0.01). After injury, the control and adrenalectomized cats showed blood flow decreases of > 60% to 4 to 6 ml/100 gm/min (p < 0.01) by 2 to 3 hours. However, cats with paravertebral sympathectomy maintained blood flow above 9 ml/100 gm/min for up to 3 hours after injury. All the sympathectomized cats recovered their SEP by the 3rd hour after injury, compared with none of the controls. Thus, in the absence of the paravertebral sympathetic ganglia, spinal blood flow autoregulation was impaired and the typical posttraumatic loss in blood flow did not occur. The sympathectomy also protected the spinal cords from the neurophysiological loss usually seen in 400 gm-cm injury. The data suggest the need for caution in using acetylcholine blocking agents to paralyze animals in experimental spinal injury, since these agents alter sympathetic activity and may influence the injury process. The spinal cord is an excellent model in which to investigate sympathetic regulation of central nervous system blood flow.

1983 ◽  
Vol 58 (5) ◽  
pp. 708-713 ◽  
Author(s):  
Mark S. Ercius ◽  
William F. Chandler ◽  
John W. Ford ◽  
William E. Burkel

✓ The present study investigates the hematological reaction to arterial injury during the first 10 minutes after endarterectomy in dogs to determine if heparin reversal during this early period predisposes to thrombus formation. Known platelet physiology would predict that heparinization during this early period would be useful to allow a fibrin-free platelet monolayer to form. After systemic heparinization (145 µ/kg) of the experimental animals, 42 endarterectomies were performed. Blood flow was then resumed for specific periods of time, and the vessels were prepared for scanning electron microscopy. Group 1 vessels (from the unheparinized control group) revealed mural thrombus formation after 10 minutes of blood flow. Group 2 vessels revealed the progressive formation of a fibrin-free platelet monolayer after 2, 5, or 10 minutes of blood flow resumption under systemic heparinization. Group 3 arteries, harvested at 10 minutes, underwent immediate (within 1 to 2 minutes after resumption of flow) heparin reversal with protamine sulfate, and demonstrated numerous patches of fibrin covering the platelet monolayer. Group 4 arteries, studied after 3 hours of blood flow, also underwent immediate heparin reversal. Two of these seven specimens had clumps of fibrin overlying the platelet monolayer. The Group 5 vessels had heparin reversal at 10 minutes, and demonstrated no fibrin overlying the platelet monolayer after 3 hours of blood flow. This study demonstrates the formation of a fibrin-free platelet monolayer over the endarterectomized vessel wall within 10 minutes of resumption of flow under systemic heparinization. These findings suggest that heparin may safely be reversed following a carotid endarterectomy if one awaits the initial critical 10 minutes of blood flow.


1991 ◽  
Vol 75 (6) ◽  
pp. 906-910 ◽  
Author(s):  
Hidenori Kobayashi ◽  
Minoru Hayashi ◽  
Hirokazu Kawano ◽  
Yuji Handa ◽  
Masanori Kabuto ◽  
...  

✓ Thirty male Wistar rats, weighing 350 to 400 gm each, received stereotactic injections of 6-hydroxydopamine (300 µg/kg) into the left lateral ventricle. The same amount of saline was injected into a control group of 15 rats. Seven days after this procedure, cerebral blood flow (CBF) was measured by the hydrogen clearance method. A hypertensive condition at a mean arterial pressure of about 160 mm Hg was maintained for 1 hour by intravenous infusion of phenylephrine. In the 6-hydroxydopamine-treated group, CBF increased significantly after the elevation of systemic blood pressure compared with that in the control group, and cerebral autoregulation was impaired. After a 1-hour study, the specific gravity of the cerebral tissue in the treated group significantly decreased; electron microscopic studies at that time revealed brain edema. It is suggested that depletion of brain noradrenaline levels causes a disturbance in cerebral microvascular tone and renders the cerebral blood vessels more vulnerable to hypertension.


1979 ◽  
Vol 50 (5) ◽  
pp. 633-638 ◽  
Author(s):  
Phillip A. Tibbs ◽  
Byron Young ◽  
R. G. McAllister ◽  
Edward P. Todd

✓ Regional cerebral blood flow (CBF) was measured by the microsphere technique in anesthetized, mechanically ventilated dogs before and after cervical laminectomy in four (control group), or cervical laminectomy followed by cervical cord transection (CCT) at the C-6 level in six (experimental group). No significant differences in arterial pH, pO2 or pCO2 were observed between control and experimental dogs. Baseline values for mean arterial pressure (MAP) were also similar in the two groups, but MAP fell in all experimental dogs after CCT (p < 0.025). At 120 minutes after CCT, three of the six dogs had an MAP > 60 torr (66 ± 4 torr), and in three the MAP was < 50 torr (45 ± 3 torr). Regional CBF in cortical gray matter, white matter, and medulla did not change significantly after CCT in dogs with MAP > 60 torr. The CBF fell significantly at 120 minutes after CCT in all regions sampled in the dogs with MAP < 50 torr (p < 0.025). At 30 and 120 minutes after CCT, cerebellar blood flow fell significantly in all experimental animals (p < 0.05). These findings indicate that, despite hypotension and sympathetic denervation of cerebral vessels, CBF in cortical gray matter, white matter, and medulla is maintained at normal levels after CCT by autoregulation as long as MAP exceeds 60 torr. Decreased cerebellar blood flow in the experimental group suggests redistribution of CBF after CCT with relative preservation of flow to gray matter, white matter, and medulla. Reduced CBF in the acutely cord-injured patient with significant hypotension (MAP < 60 torr) may simulate or complicate coexistent head injury.


1998 ◽  
Vol 89 (3) ◽  
pp. 454-459 ◽  
Author(s):  
Ingunn R. Rise ◽  
Ole J. Kirkeby

Object. In this study the authors tested the hypothesis that hemorrhagic hypotension and high intracranial pressure induce an increase in cerebrovascular resistance that is caused by sympathetic compensatory mechanisms and can be modified by α-adrenergic blockade. Methods. Continuous measurements of cerebral blood flow were obtained using laser Doppler microprobes placed in the cerebral cortex in anesthetized pigs during induced hemorrhagic hypotension and high cerebrospinal fluid pressure. Eight pigs received 2 mg/kg phentolamine in 10 ml saline, and 13 pigs served as control animals. During high intracranial pressure occurring after blood loss, cerebral perfusion pressure (CPP) (p < 0.01) and cerebral blood flow (p < 0.01) decreased in both groups. Cerebrovascular resistance increased (p < 0.05) in the control group and decreased < 0.005) in the phentolamine-treated group. The cerebrovascular resistance was significantly lower in the phentolamine-treated group (p < 0.05) than in the control group. Cerebrovascular resistance increased at lower CPPs in the control group (linear correlation, r = 0.39, p < 0.01) and decreased with decreasing CPP in the phentolamine-treated group (linear correlation, r = 0.76, p < 0.001). Conclusions. This study shows that the deleterious effects on cerebral hemodynamics induced by blood loss in combination with high intracranial pressure are inhibited by α-adrenergic blockade. This suggests that these responses are caused by α-adrenergically mediated cerebral vasoconstriction.


1992 ◽  
Vol 76 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Reizo Shirane ◽  
Philip R. Weinstein

✓ The effects of pretreatment with mannitol on local cerebral blood flow (CBF) after permanent or temporary global cerebral ischemia were evaluated with 14C-iodoantipyrine autoradiography in rats under halothane-N2O endotracheal anesthesia. Blood pressure, pulse rate, arterial blood gas levels, and electroencephalographic (EEG) tracings were monitored throughout the experiments. After permanent occlusion of the basilar artery and both external carotid and pterygopalatine arteries, severe global ischemia was induced by permanent occlusion of the common carotid arteries (CCA's) or by a 30-minute temporary CCA occlusion followed by 5 minutes of reperfusion. Intravenous mannitol (25%, 1 gm/kg) or saline solution was administered 5 minutes before occlusion of the CCA's. Cerebral blood flow was measured in 24 anatomical regions. The EEG tracings flattened within 2 to 3 minutes after the onset of ischemia, and no recovery was observed during reperfusion. In the mannitol-treated rats and the saline-treated controls, autoradiographic studies after permanent occlusion showed no CBF in the forebrain or cerebellum, although brain-stem and spinal cord CBF values were normal. After 5 minutes of reperfusion, CBF in the cortex, basal ganglia, and white matter was 100% to 200% higher in mannitol-treated rats and 50% to 100% higher in saline-injected rats than in the nonischemic anesthetized control group. Heterogeneously distributed areas of no-reflow were seen in all saline-injected rats but were observed in none of the mannitol-treated rats. Pretreatment with mannitol prevented postischemic obstruction of the microcirculation during 5 minutes of recirculation after 30 minutes of severe temporary ischemia, but the EEG signals did not recover. Further studies of the functional and morphological responses to longer periods of postischemic recirculation are needed to verify the extent to which these mannitol-induced effects are protective.


1993 ◽  
Vol 79 (3) ◽  
pp. 363-368 ◽  
Author(s):  
Tadahiko Shiozaki ◽  
Hisashi Sugimoto ◽  
Mamoru Taneda ◽  
Hiroyoshi Yoshida ◽  
Atsushi Iwai ◽  
...  

✓ Recent experimental studies have demonstrated that mild hypothermia at about 34°C can be effective in the control of intracranial hypertension. A randomized controlled study of mild hypothermia was carried out in 33 severely head-injured patients. All patients fulfilled the following criteria: 1) persistent intracranial pressure (ICP) greater than 20 mm Hg despite fluid restriction, hyperventilation, and high-dose barbiturate therapy; 2) an ICP lower than the mean arterial blood pressure; and 3) a Glasgow Coma Scale score of 8 or less. The patients were divided into two groups: one received mild hypothermia (16 patients) and one served as a control group (17 patients). Mild hypothermia significantly reduced the ICP and increased the cerebral perfusion pressure. Eight patients (50%) in the hypothermia group and three (18%) in the control group survived (p < 0.05), while five (31%) in the hypothermia group and 12 (71%) in the control group died of uncontrollable intracranial hypertension (p < 0.05). In five patients in the hypothermia group, cerebral blood flow was measured by the hydrogen clearance method and arteriojugular venous oxygen difference was evaluated before and during mild hypothermia. Mild hypothermia significantly decreased the cerebral blood flow, arteriojugular venous oxygen difference, and cerebral metabolic rate of oxygen (p < 0.01). The results of this preliminary investigation suggest that mild hypothermia is a safe and effective method to control traumatic intracranial hypertension and to improve mortality and morbidity rates.


1981 ◽  
Vol 55 (6) ◽  
pp. 935-937 ◽  
Author(s):  
Giuseppe Salar ◽  
Salvatore Mingrino ◽  
Marco Trabucchi ◽  
Angelo Bosio ◽  
Carlo Semenza

✓ The β-endorphin content in cerebrospinal fluid (CSF) was evaluated in 10 patients with idiopathic trigeminal neuralgia during medical treatment (with or without carbamazepine) and after selective thermocoagulation of the Gasserian ganglion. These values were compared with those obtained in a control group of seven patients without pain problems. No statistically significant difference was found between patients suffering from trigeminal neuralgia and those without pain. Furthermore, neither pharmacological treatment nor surgery changed CSF endorphin values. It is concluded that there is no pathogenetic relationship between trigeminal neuralgia and endorphins.


1974 ◽  
Vol 41 (6) ◽  
pp. 657-670 ◽  
Author(s):  
Sean Mullan

✓ The results of 61 cases of stereotaxic thrombosis of intracranial berry aneurysms indicate that the technique in selected cases is comparable to, but not necessarily superior to standard surgical methods. The results of wire-induced thrombosis in 15 cases of giant intracranial aneurysm suggest that this method is effective in situations where clipping and encapsulation are inapplicable. The results of thrombosis in six cases of carotid cavernous fistula suggest that intracavernous wire thrombosis may prove to be the treatment of choice in that it seals the fistula without impairing carotid blood flow.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


1992 ◽  
Vol 76 (4) ◽  
pp. 635-639 ◽  
Author(s):  
Shigeru Nishizawa ◽  
Nobukazu Nezu ◽  
Kenichi Uemura

✓ Vascular contraction is induced by the activation of intracellular contractile proteins mediated through signal transduction from the outside to the inside of cells. Protein kinase C plays a crucial role in this signal transduction. It is hypothesized that protein kinase C plays a causative part in the development of vasospasm after subarachnoid hemorrhage (SAH). To verify this directly, the authors measured protein kinase C activity in canine basilar arteries in an SAH model with (γ-32P)adenosine triphosphate and the data were compared to those in a control group. Protein kinase C is translocated to the membrane from the cytosol when it is activated, and the translocation is an index of the activation; thus, protein kinase C activity was measured both in the cytosol and in the membrane fractions. Protein kinase C activity in the membrane in the SAH model was remarkably enhanced compared to that in the control group. The percentage of membrane activity to the total was also significantly greater in the SAH vessels than in the control group, and the percentage of cytosol activity in the SAH group was decreased compared to that in the control arteries. The results indicate that protein kinase C in the vascular smooth muscle was translocated to the membrane from the cytosol and was activated when SAH occurred. It is concluded that this is direct evidence for a key role of protein kinase C in the development of vasospasm.


Sign in / Sign up

Export Citation Format

Share Document