Optimum degree of hemodilution for brain protection in a canine model of focal cerebral ischemia

1994 ◽  
Vol 80 (3) ◽  
pp. 469-475 ◽  
Author(s):  
Sun Ho Lee ◽  
Roberto C. Heros ◽  
John C. Mullan ◽  
Kazuyoshi Korosue

✓ The ability of hemodilution to lower blood viscosity and increase cerebral blood flow has been proven experimentally; however, the optimum hematocrit for maximum oxygen delivery to ischemic brain tissue is not known, and a study was designed to determine this. Fifty dogs were selected for inclusion in the study using criteria based on changes in somatosensory evoked potentials at the time of arterial occlusion, which were found in a previous study to predict the development of a moderate infarction of relatively constant size. Infarctions were induced by permanent occlusion of the left middle cerebral artery and the azygous anterior cerebral artery. The animals selected for inclusion were divided into five groups of 10 dogs each: 1) a control group; 2) a group with 25% hematocrit; 3) a group with 30% hematocrit; 4) a group with 35% hematocrit; and 5) a group with 40% hematocrit. Isovolemic hemodilution was accomplished 1 hour after occlusion of vessels using dextran infusion and blood withdrawal. The animals were sacrificed after 6 days and infarction volume was determined from fluorescein-stained sections. Statistical analysis was performed using Student's t-test and one-way analysis of variance. Mean infarction volume for each group, expressed as a percentage of total hemispheric volume ± 1 standard error of the mean, was 28.3% ± 2.8% for the control group, 33.6% ± 3.4% for the 25% hematocrit group, 17.1% ± 2.2% for the 30% hematocrit group, 29.2% ± 4.3% for the 35% hematocrit group, and 29.9% ± 2.1% for the 40% hematocrit group. The 30% hematocrit group showed the smallest average infarction size and this size differed significantly (p = 0.02) from the average infarction size in the control animals. These results show that, in this model of focal ischemia, a hematocrit of approximately 30% is optimum for protecting the brain.

1989 ◽  
Vol 70 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Toshihiko Kuroiwa ◽  
Makoto Shibutani ◽  
Riki Okeda

✓ The effect of suppression of postischemic reactive hyperemia on the blood-brain barrier (BBB) and ischemic brain edema after temporary focal cerebral ischemia was studied in cats under ketamine and alpha-chloralose anesthesia. Regional cerebral blood flow (rCBF) was measured by a thermal diffusion method and a hydrogen clearance method. The animals were separated into three groups. In Group A, the left middle cerebral artery (MCA) was occluded for 6 hours. In Group B, the MCA was occluded for 3 hours and then reperfused for 3 hours; postischemic hyperemia was suppressed to the preischemic level by regulating the degree of MCA constriction. In Group C, the MCA was occluded for 3 hours and reperfused for 3 hours without suppressing the postischemic reactive hyperemia. The brain was removed and cut coronally at the site of rCBF measurement. The degree of ischemic edema was assessed by gravimetry in samples taken from the coronal section and correlated with the degree of BBB disruption at the corresponding sites, evaluated by densitometric determination of Evans blue discoloration. The findings showed that 1) ischemic edema was significantly exacerbated by postischemic hyperemia during reperfusion in parallel with the degree of BBB opening to serum proteins, and 2) suppression of postischemic hyperemia significantly reduced the exacerbation of ischemic edema and BBB opening. These findings indicate that blood flow may be restored without significant exacerbation of postischemic edema by the suppression of postischemic hyperemia in focal cerebral ischemia.


1977 ◽  
Vol 47 (3) ◽  
pp. 463-465 ◽  
Author(s):  
Antti Servo ◽  
Matti Puranen

✓ An aneurysm of the left middle cerebral artery was treated by clipping with a Heifetz clip. The correct placement was confirmed angiographically immediately after the operation. At carotid angiography 1 year later the clip was found to have broken, and the aneurysm had increased in size.


1996 ◽  
Vol 85 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Arnd Doerfler ◽  
Michael Forsting ◽  
Wolfgang Reith ◽  
Christian Staff ◽  
Sabine Heiland ◽  
...  

✓ Acute ischemia in the complete territory of the carotid artery may lead to massive cerebral edema with raised intracranial pressure and progression to coma and death due to uncal, cingulate, or tonsillar herniation. Although clinical data suggest that patients benefit from undergoing decompressive surgery for acute ischemia, little data about the effect of this procedure on experimental ischemia are available. In this article the authors present results of an experimental study on the effects of decompressive craniectomy performed at various time points after endovascular middle cerebral artery (MCA) occlusion in rats. Focal cerebral ischemia was induced in 68 rats using an endovascular occlusion technique focused on the MCA. Decompressive cranioectomy was performed in 48 animals (in groups of 12 rats each) 4, 12, 24, or 36 hours after vessel occlusion. Twenty animals (control group) were not treated by decompressive craniectomy. The authors used the infarct volume and neurological performance at Day 7 as study endpoints. Although the mortality rate in the untreated group was 35%, none of the animals treated by decompressive craniectomy died (mortality 0%). Neurological behavior was significantly better in all animals treated by decompressive craniectomy, regardless of whether they were treated early or late. Neurological behavior and infarction size were significantly better in animals treated very early by decompressive craniectomy (4 hours) after endovascular MCA occlusion (p < 0.01); surgery performed at later time points did not significantly reduce infarction size. The results suggest that use of decompressive craniectomy in treating cerebral ischemia reduces mortality and significantly improves outcome. If performed early after vessel occlusion, it also significantly reduces infarction size. By performing decompressive craniectomy neurosurgeons will play a major role in the management of stroke patients.


2004 ◽  
Vol 100 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Kazuhide Furuya ◽  
Nobutaka Kawahara ◽  
Kensuke Kawai ◽  
Tomikatsu Toyoda ◽  
Keiichiro Maeda ◽  
...  

Object. The intraluminal suture model for focal cerebral ischemia is increasingly used, but not without problems. It causes hypothalamic injury, subarachnoid hemorrhage, and inadvertent premature reperfusion. The patency of the posterior communicating artery (PCoA) potentially affects the size of the infarct. In addition, survival at 1 week is unstable. The authors operated on C57Black6 mice to produce proximal middle cerebral artery occlusion (MCAO) so that drawbacks with the suture model could be circumvented. Methods. The MCA segment just proximal to the olfactory branch was occluded either permanently or temporarily. After 1 hour of MCAO the infarct volume was significantly smaller than that found after 2 hours or in instances of permanent MCAO. The differences were assessed at 24 hours and 7 days after surgery (p < 0.05 and p < 0.001, respectively). The patency of the PCoA, as visualized using carbon black solution, did not correlate with the infarct size. Neurologically, the 1- and 2-hour MCAO groups displayed significantly less severe deficits than the permanent MCAO group on Days 1, 4, and 7 (p < 0.005 and p < 0.01, respectively). Although the infarct size, neurological deficits, and body weight loss were more severe in the permanent MCAO group, the survival rate at Day 7 was 80%. Conclusions. This model provides not only a robust infarct size (which is not affected by the patency of the PCoA), but also a better survival rate.


1981 ◽  
Vol 54 (6) ◽  
pp. 773-782 ◽  
Author(s):  
Thomas H. Jones ◽  
Richard B. Morawetz ◽  
Robert M. Crowell ◽  
Frank W. Marcoux ◽  
Stuart J. FitzGibbon ◽  
...  

✓ An awake-primate model has been developed which permits reversible middle cerebral artery (MCA) occlusion during physiological monitoring. This method eliminates the ischemia-modifying effects of anesthesia, and permits correlation of neurological function with cerebral blood flow (CBF) and neuropathology. The model was used to assess the brain's tolerance to focal cerebral ischemia. The MCA was occluded for 15 or 30 minutes, 2 to 3 hours, or permanently. Serial monitoring evaluated neurological function, local CBF (hydrogen clearance), and other physiological parameters (blood pressure, blood gases, and intracranial pressure). After 2 weeks, neuropathological evaluation identified infarcts and their relation to blood flow recording sites. Middle cerebral artery occlusion usually caused substantial decreases in local CBF. Variable reduction in flow correlated directly with the variable severity of deficit. Release of occlusion at up to 3 hours led to clinical improvement. Pathological examination showed microscopic foci of infarction after 15 to 30 minutes of ischemia, moderate to large infarcts after 2 to 3 hours of ischemia, and in most cases large infarcts after permanent MCA occlusion. Local CBF appeared to define thresholds for paralysis and infarction. When local flow dropped below about 23 cc/100 gm/min, reversible paralysis occurred. When local flow fell below 10 to 12 cc/100 gm/min for 2 to 3 hours or below 17 to 18 cc/100 gm/min during permanent occlusion, irreversible local damage was observed. These studies imply that some cases of acute hemiplegia, with blood flow in the paralysis range, might be improved by surgical revascularization. Studies of local CBF might help identify suitable cases for emergency revascularization.


1985 ◽  
Vol 62 (6) ◽  
pp. 874-881 ◽  
Author(s):  
Robert J. Dempsey ◽  
Mark W. Roy ◽  
Kathleen L. Meyer ◽  
David L. Donaldson

✓ Focal cerebral ischemia initiates multiple detrimental effects in the brain. Chief among these are the regional development of ischemic edema, decreased local perfusion, altered neuronal function, and eventual infarction. To determine if pretreatment with the cyclo-oxygenase inhibitor, indomethacin, would result in improvement in these parameters, adult cats were given indomethacin or control solvent (4 mg/kg intraperitoneally twice daily) and were studied for periods up to 24 hours after right middle cerebral artery occlusion. The interaction of anesthetic agents with indomethacin was also examined in separate groups of experimental animals using pentobarbital and ketamine. In cats allowed to recover from pentobarbital anesthesia, indomethacin reduced gray and white matter edema at 6 and 24 hours after occlusion (p < 0.05). This was noted in densely ischemic areas (indomethacin = 84.3%, control = 87.5%), in “penumbra” regions (indomethacin = 82.5%, control = 85.3%), and in nonischemic zones (indomethacin = 81.5%, control = 82.3%) at 24 hours. Somatosensory evoked potential amplitude and central latency were also improved in the indomethacin group (p < 0.05), as was cerebral perfusion (p < 0.05). In animals anesthetized with continuous ketamine administration, cerebral edema and perfusion as well as evoked potentials were not significantly improved in any region by indomethacin. Regional cerebral blood flow in the group was increased by indomethacin in the nonischemic opposite hemisphere (indomethacin = 64.7 cc/100 gm/min, control = 48.5 cc/100 gm/min, p < 0.05), but not in the penumbra region of the ischemic hemisphere (indomethacin = 15.0 cc/100 gm/min, control = 18.6 cc/100 gm/min, p < 0.05), when measured 4 hours after occlusion. This suggested a steal phenomenon. Beneficial effects of indomethacin were evident in the presence of pentobarbital, but not after ketamine anesthesia. This suggests a synergism dependent on decreased arachidonic acid production from pentobarbitalstabilized membranes coupled with diminished production of cyclic endoperoxides from available arachidonate due to inhibition of cyclo-oxygenase with indomethacin.


1996 ◽  
Vol 84 (4) ◽  
pp. 690-695 ◽  
Author(s):  
Brent L. Clyde ◽  
Andrew D. Firlik ◽  
Anthony M. Kaufmann ◽  
MichaelP. Spearman ◽  
Howard Yonas

✓ Reports of intraarterial papaverine infusion as treatment for cerebral vasospasm are few and documented complications are uncommon. The authors report the case of a patient with paradoxical aggravation of cerebral arterial narrowing during selective intraarterial papaverine infusion intended to treat vasospasm following aneurysmal subarachnoid hemorrhage (SAH). A 48-year-old man presented to the authors' service with symptomatic vasospasm 10 days after experiencing an SAH. The ruptured anterior communicating artery aneurysm was surgically obliterated the following day, and thereafter maximum hypervolemic and hypertensive therapies were used. However, the patient remained lethargic, and a stable xenon—computerized tomography (CT) cerebral blood flow (CBF) study revealed CBF to be 15 cc/100 g/minute in the left anterior cerebral artery (ACA) and 25 cc/100 g/minute in the right ACA territories. Cerebral arteriography demonstrated diffuse severe left ACA and mild left middle cerebral artery (MCA) vasospasm. In response intraarterial papaverine was infused into the internal carotid artery just proximal to the ophthalmic artery. During the infusion the patient became aphasic and exhibited right hemiplegia. Arteriography performed immediately after the intraarterial papaverine infusion revealed diffuse exacerbation of vasospasm in the distal ACA and MCA territories. A repeat xenon—CT CBF study showed that CBF in the left ACA and the MCA had drastically decreased (2 cc/100 g/minute and 10 cc/100 g/minute, respectively). Despite aggressive management, infarction ultimately developed. This is the first clinical case to illustrate a paradoxical effect of intraarterial papaverine treatment for vasospasm following aneurysmal SAH. The possible mechanisms of this paradoxical response and potential therapeutic reactions are reviewed.


2003 ◽  
Vol 98 (4) ◽  
pp. 860-866 ◽  
Author(s):  
David F. Antezana ◽  
Richard E. Clatterbuck ◽  
Nabil J. Alkayed ◽  
Stephanie J. Murphy ◽  
Lauren G. Anderson ◽  
...  

Object. Ibuprofen is an antiinflammatory drug that disrupts leukocyte—endothelial cell interactions by limiting expression of endothelial adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), also known as CD54. The authors hypothesized that ibuprofen could reduce the size of the infarct associated with transient focal ischemia by inhibition of ICAM-1 expression, and they evaluated its effects in rats treated with middle cerebral artery (MCA) occlusion. Ibuprofen treatment was compared with mild systemic hypothermia, which is known to be neuroprotective and is commonly used during neurosurgical procedures. Methods. The maximum ibuprofen dose (240 mg/kg/day) that could be tolerated with no systemic toxicity was established in the initial experiments. In the efficacy experiment, rats were pretreated with vehicle, ibuprofen, or hypothermia (33°C) prior to 2 hours of MCA occlusion; then their brains were harvested at 24 hours of reperfusion for histological studies. End-ischemic cerebral blood flow (CBF) was evaluated using [14C]iodoantipyrine autoradiography in additional cohorts. Expression of ICAM-1 within ischemic compared with nonischemic caudate nucleus and putamen (striatum) or cortex was evaluated using immunohistochemical studies. Compared with vehicle treatment, ibuprofen produced a 46.2% reduction (p = 0.01) in striatal infarcts, which was comparable to hypothermia (48.7% reduction, p = 0.02). Ibuprofen did not alter end-ischemic CBF in any region studied, and the ibuprofen treatment group had the lowest proportion of animals with marked ICAM-1 staining. Conclusions. Ibuprofen given in maximum tolerated doses reduces the striatal infarct size after focal cerebral ischemia. The neuroprotective mechanism does not work through preservation of intraischemic CBF and is consistent with inhibition of ICAM-1 expression; however, at the doses used in this study, other effects of ibuprofen on platelet and endothelial function are possible.


2002 ◽  
Vol 97 (4) ◽  
pp. 914-921 ◽  
Author(s):  
Bernard A. Coert ◽  
Robert E. Anderson ◽  
Fredric B. Meyer

Object. A nitric oxide (NO) donor that has been successfully used in the treatment of myocardial infarction, 3-morpholinosydnonimine (SIN-1), may be a potential neuroprotective agent. Production of NO in brain microsomes is dependent on the pH. The purpose of this study was to determine the efficacy of SIN-1 and its dependence on pH in vivo during periods of focal cerebral ischemia. Methods. At 0.1 or 1 mg/kg, SIN-1 was administered to 54 Wistar rats 30 minutes before a 2-hour period of focal cerebral ischemia under moderate hypo-, normo-, and hyperglycemic conditions. Measurements of brain intracellular pH (pHi); regional cortical blood flow, and the redox state of nicotinamide adenine dinucleotide were obtained in three additional animals to confirm the effects of the serum glucose manipulations. The animals were killed at 72 hours after the ischemic period to obtain infarction volumes. Administration of SIN-1 significantly reduced infarction in normoglycemic animals and, to a lesser extent, in hyperglycemic animals, indicating that SIN-1 was less effective under hyperglycemic conditions. At either dose SIN-1 had no significant effect on infarction volume in moderately hypoglycemic animals because moderate hypoglycemia in itself significantly (p < 0.005) reduced infarction volume. Conclusions. The NO donor SIN-1 may be a useful intraoperative cerebral protective agent. Furthermore, it is hypothesized that a mechanism that could explain the published discrepancies regarding the effects of NO donors in vivo may be affected by differences in ischemic brain acidosis.


2001 ◽  
Vol 94 (4) ◽  
pp. 573-581 ◽  
Author(s):  
Toru Fukuhara ◽  
Mark G. Luciano ◽  
Christine L. Brant ◽  
Jennifer Klauscie

Object. The pathophysiology of shunt malfunction has not been fully examined, probably because of the paucity of appropriate animal models. Using a canine model of chronic obstructive hydrocephalus, the effects of shunt placement and removal on physiological parameters were evaluated. Methods. Fifteen dogs, nine in which chronic hydrocephalus was induced and six controls, were used in the experiment. Thirteen weeks after the induction of hydrocephalus, intracranial pressure (ICP), tissue and cerebrospinal fluid O2 saturation, response to hyperventilation, and brain compliance at low (5–15 mm Hg) and high (15–25 mm Hg) pressures were measured (untreated stage). Following this procedure, ventriculoperitoneal shunts were implanted in the dogs suffering from hydrocephalus. Two weeks later, the same series of measurements were repeated (shunted stage), following which the shunt systems were removed. One week after shunt removal, the last measurements were obtained (shunt-removed stage). All dogs underwent magnetic resonance imaging four times: before induction of hydrocephalus and before each measurement. All dogs with hydrocephalus also had ventriculomegaly (1.42 ± 0.89 ml before induction of hydrocephalus compared with 3.4 ± 1.64 ml 13 weeks after induction, p = 0.0064). In dogs in the untreated hydrocephalus stage, ICP remained within the normal range (8.33 ± 2.60 mm Hg)—although it was significantly higher than that in the control group (5 ± 1.41 mm Hg, p = 0.014). Tissue O2 saturation in the dogs in the hydrocephalus group (26.1 ± 5.33 mm Hg) was lower than that in the dogs in the control group (48.7 ± 4.27 mm Hg, p < 0.0001). After the dogs underwent shunt placement, significant improvement was observed in their ICP (5.22 ± 2.17 mm Hg, p = 0.012) and tissue O2 saturation (35.2 ± 6.80 mm Hg, p = 0.0084). However, removal of the shunt reversed these improvements back to the preshunt status. Hyperventilation induced significant decreases in ICP and O2 saturation at every measurement time and induced a significant decrease in tissue O2 saturation during the shunted stage, but not during the untreated and shunt-removed stages. Brain compliance measured at high pressure demonstrated a significant gradual decrease at every measurement. Conclusions. In chronic obstructive hydrocephalus, shunt placement improves ICP and cerebral oxygenation as well as the response to hyperventilation in the tissue. Shunt removal reverses these improvements back to levels present during the untreated stage. The decrease in brain compliance may be one of the factors responsible for symptoms in shunt malfunction.


Sign in / Sign up

Export Citation Format

Share Document