bbb opening
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 37)

H-INDEX

17
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Kaixuan Luo ◽  
Yuhong Wang ◽  
Wen-Shiang Chen ◽  
Xiangjun Feng ◽  
Yehui Liao ◽  
...  

Alzheimer’s disease (AD) is the most common type of dementia but lacks effective treatment at present. Gastrodin (GAS) is a phenolic glycoside extracted from the traditional Chinese herb—Gastrodia elata—and has been reported as a potential therapeutic agent for AD. However, its efficiency is reduced for AD patients due to its limited BBB permeability. Studies have demonstrated the feasibility of opening the blood-brain barrier (BBB) via focused ultrasound (FUS) to overcome the obstacles preventing medicines from blood flow into the brain tissue. We explored the therapeutic potential of FUS-mediated BBB opening combined with GAS in an AD-like mouse model induced by unilateral intracerebroventricular (ICV) injection of Aβ1-42. Mice were divided into 5 groups: control, untreated, GAS, FUS and FUS+GAS. Combined treatment (FUS+GAS) rather than single intervention (GAS or FUS) alleviated memory deficit and neuropathology of AD-like mice. The time that mice spent in the novel arm was prolonged in the Y-maze test after 15-day intervention, and the waste-cleaning effect was remarkably increased. Contents of Aβ, tau, and P-tau in the observed (also the targeted) hippocampus were reduced. BDNF, synaptophysin (SYN), and PSD-95 were upregulated in the combined group. Overall, our results demonstrate that FUS-mediated BBB opening combined with GAS injection exerts the potential to alleviate memory deficit and neuropathology in the AD-like experimental mouse model, which may be a novel strategy for AD treatment.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5614
Author(s):  
Luca Paun ◽  
Alessandro Moiraghi ◽  
Gianpaolo Jannelli ◽  
Aria Nouri ◽  
Francesco DiMeco ◽  
...  

Background: Focused Ultrasound (FUS) is gaining a therapeutic role in neuro-oncology considering its novelty and non-invasiveness. Multiple pre-clinical studies show the efficacy of FUS mediated ablation and Blood-Brain Barrier (BBB) opening in high-grade glioma (HGG), but there is still poor evidence in humans, mainly aimed towards assessing FUS safety. Methods: With this systematic review our aim is, firstly, to summarize how FUS is proposed for human HGG treatment. Secondly, we focus on future perspectives and new therapeutic options. Using PRISMA 2020 guidelines, we reviewed case series and trials with description of patient characteristics, pre- and post-operative treatments and FUS outcomes. We considered nine case series (five about tumor ablation and four about BBB opening) with FUS-treated HGG patients between 1991 and 2021. Results: Sixty-eight patients were considered in total, mostly males (67.6%), with a mean age of 50.5 ± 15.3 years old. Major complication rates were found in the tumor ablation group (26.1%). FUS has been rarely applied for direct tumoral ablation in human HGG patients with controversial results, but at the best of current studies, FUS-mediated BBB opening is showing good results with very low complication rates, paving the way for a new reliable technique to improve local chemotherapy delivery and antitumoral immune response. Conclusions: FUS can become a complementary technique to surgical resection and standard radiochemotherapy in recurrent HGG. Ongoing trials could provide in the near future more data on FUS-mediated BBB opening impact on progression-free survival, overall survival and potential drug-delivery capacities.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
So Hee Park ◽  
Kyoungwon Baik ◽  
Seun Jeon ◽  
Won Seok Chang ◽  
Byoung Seok Ye ◽  
...  

Abstract Background Focused ultrasound (FUS)-mediated blood–brain barrier (BBB) opening has shown efficacy in removal of amyloid plaque and improvement of cognitive functions in preclinical studies, but this is rarely reported in clinical studies. This study was conducted to evaluate the safety, feasibility and potential benefits of repeated extensive BBB opening. Methods In this open-label, prospective study, six patients with Alzheimer’s disease (AD) were enrolled at Severance Hospital in Korea between August 2020 and September 2020. Five of them completed the study. FUS-mediated BBB opening, targeting the bilateral frontal lobe regions over 20 cm3, was performed twice at three-month intervals. Magnetic resonance imaging, 18F-Florbetaben (FBB) positron emission tomography, Caregiver-Administered Neuropsychiatric Inventory (CGA-NPI) and comprehensive neuropsychological tests were performed before and after the procedures. Results FUS targeted a mean volume of 21.1 ± 2.7 cm3 and BBB opening was confirmed at 95.7% ± 9.4% of the targeted volume. The frontal-to-other cortical region FBB standardized uptake value ratio at 3 months after the procedure showed a slight decrease, which was statistically significant, compared to the pre-procedure value (− 1.6%, 0.986 vs1.002, P = 0.043). The CGA-NPI score at 2 weeks after the second procedure significantly decreased compared to baseline (2.2 ± 3.0 vs 8.6 ± 6.0, P = 0.042), but recovered after 3 months (5.2 ± 5.8 vs 8.6 ± 6.0, P = 0.89). No adverse effects were observed. Conclusions The repeated and extensive BBB opening in the frontal lobe is safe and feasible for patients with AD. In addition, the BBB opening is potentially beneficial for amyloid removal in AD patients.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi164-vi164
Author(s):  
Tavarekere Nagaraja ◽  
Seamus Bartlett ◽  
Glauber Cabral ◽  
Katelynn Farmer ◽  
Robert Knight ◽  
...  

Abstract Laser interstitial thermal therapy (LITT) is a minimally invasive tumor cytoreductive treatment for recurrent gliomas, brain tumors in eloquent regions and/or otherwise inaccessible. Following reports of persistent peri-ablation blood-brain barrier (BBB) opening in humans, we examined this phenomenon using a rat glioblastoma model. Athymic female rats were implanted with U251 tumor cells in one brain hemisphere. Tumor growth was monitored using magnetic resonance imaging (MRI) and dynamic contrast enhanced (DCE)-MRI. When tumors reached about 4 mm in diameter, they were ablated under supervision of diffusion-weighted MRI using Visualase®, a clinical LITT system. Four rats were used as controls. Longitudinal MRI data were obtained before LITT, and at post-LITT 2 (n=9), 3 (n=3) and 4 (n=9) weeks. After the terminal MRI at each time point, rats were injected intravenously with fluorescent isothiocyanate dextran (FITC-dextran; 2000 kDa) and Evans Blue (68 kDa after binding to plasma albumin) and the brains immersion fixed in 10% paraformaldehyde. The brains were cut into 100 μM thick slices in a vibratome and examined for the distribution of the two fluorophores. All rats survived the LITT procedure. The sham controls showed increased tumor burden by 2 weeks and were sacrificed. DCE-MRI data and fluorescent data showed elevated BBB permeability in peri-ablation regions, with leakage of a gadolinium contrast on DCE-MRI and of Evans Blue, but not of FITC-dextran. Histology showed little tumor tissue at 2 weeks, but evidence of recurrence at ablation margins at later times. These data demonstrate that LITT is adaptable to rat glioma models and can be performed under MRI monitoring. Peri-ablation regions showed selective increase in BBB permeability acutely due to sublethal heating, but later increases in permeability may be due to tumor recurrence. We suggest this model is useful for examining the temporal and spatial development of peri-ablation BBB opening following LITT.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi44-vi45
Author(s):  
Masih Tazhibi ◽  
Nicholas McQuillan ◽  
Hong-Jian Wei ◽  
Antonios Pouliopoulos ◽  
Ethan Bendau ◽  
...  

Abstract Diffuse midline gliomas (DMG) are pediatric tumors with dismal prognosis. When these tumors emerge in the brainstem, there exists no feasible method of surgical resection or systemic intervention, making ionizing radiation the sole therapeutic avenue to date. However, radiotherapy (RT) provides only marginal survival benefit as the topographically diffuse and highly infiltrative tumors spread in areas in which the blood-brain barrier (BBB) is relatively intact. Focused ultrasound (FUS) with intravenous microbubbles provides a compelling solution, transiently and non-invasively opening the BBB to allow drug delivery across the cerebrovasculature. Nonetheless, it remains unclear whether FUS can be safely administered at the brainstem in patients receiving RT. Therefore, the goal of this study was to assess the safety and feasibility of FUS administered concurrent with and adjuvant to a clinical hypofractionated radiation scheme for brainstem DMG. Non-tumor bearing B6 albino mice were randomly assorted into control, RT, FUS, and RT+FUS groups. Mice designated RT+FUS received 39Gy/13fx (hypofractionated RT scheme) to the brainstem with two sessions of FUS approximately 1 week apart. A single-element, spherical-segment FUS transducer driven by a function generator through a power amplifier was used with concomitant microbubble injection to sonicate the brainstem. Magnetic resonance imaging (MRI) was used to confirm BBB opening and cardiopulmonary measures were recorded throughout sonication. Vitals were assessed daily, and all treatment animals underwent Kondziela inverted screen testing and sequential weight lifting to assess brainstem-related strength and motor coordination deficits. In both FUS and RT+FUS mice, MRI confirmed brainstem BBB opening and subsequent closure within 96 hours. Mouse weights were stable, with slight drops (mean=5.5%) following FUS that resolved within three days. No attenuation in cardiorespiratory, strength, and motor coordination measurements was observed from FUS. FUS is a safe and feasible technique for brainstem BBB opening concurrent with and adjuvant to clinical hypofractionated RT.


2021 ◽  
pp. 1-11
Author(s):  
Yi Wang ◽  
Matthew J. Anzivino ◽  
Yanrong Zhang ◽  
Edward H. Bertram ◽  
James Woznak ◽  
...  

OBJECTIVE Surgery can be highly effective for the treatment of medically intractable, neurological disorders, such as drug-resistant focal epilepsy. However, despite its benefits, surgery remains substantially underutilized due to both surgical concerns and nonsurgical impediments. In this work, the authors characterized a noninvasive, nonablative strategy to focally destroy neurons in the brain parenchyma with the goal of limiting collateral damage to nontarget structures, such as axons of passage. METHODS Low-intensity MR-guided focused ultrasound (MRgFUS), together with intravenous microbubbles, was used to open the blood-brain barrier (BBB) in a transient and focal manner in rats. The period of BBB opening was exploited to focally deliver to the brain parenchyma a systemically administered neurotoxin (quinolinic acid) that is well tolerated peripherally and otherwise impermeable to the BBB. RESULTS Focal neuronal loss was observed in targeted areas of BBB opening, including brain regions that are prime objectives for epilepsy surgery. Notably, other structures in the area of neuronal loss, including axons of passage, glial cells, vasculature, and the ventricular wall, were spared with this procedure. CONCLUSIONS These findings identify a noninvasive, nonablative approach capable of disconnecting neural circuitry while limiting the neuropathological consequences that attend other surgical procedures. Moreover, this strategy allows conformal targeting, which could enhance the precision and expand the treatment envelope for treating irregularly shaped surgical objectives located in difficult-to-reach sites. Finally, if this strategy translates to the clinic, the noninvasive nature and specificity of the procedure could positively influence both physician referrals for and patient confidence in surgery for medically intractable neurological disorders.


2021 ◽  
Vol 118 (37) ◽  
pp. e2103280118
Author(s):  
Pavlos Anastasiadis ◽  
Dheeraj Gandhi ◽  
Yutong Guo ◽  
Abdul-Kareem Ahmed ◽  
Soren M. Bentzen ◽  
...  

Pharmacological treatment of gliomas and other brain-infiltrating tumors remains challenging due to limited delivery of most therapeutics across the blood–brain barrier (BBB). Transcranial MRI-guided focused ultrasound (FUS), an emerging technology for noninvasive brain treatments, enables transient opening of the BBB through acoustic activation of circulating microbubbles. Here, we evaluate the safety and utility of transcranial microbubble-enhanced FUS (MB-FUS) for spatially targeted BBB opening in patients with infiltrating gliomas. In this Phase 0 clinical trial (NCT03322813), we conducted comparative and quantitative analyses of FUS exposures (sonications) and their effects on gliomas using MRI, histopathology, microbubble acoustic emissions (harmonic dose [HD]), and fluorescence-guided surgery metrics. Contrast-enhanced MRI and histopathology indicated safe and reproducible BBB opening in all patients. These observations occurred using a power cycling closed feedback loop controller, with the power varying by nearly an order of magnitude on average. This range underscores the need for monitoring and titrating the exposure on a patient-by-patient basis. We found a positive correlation between microbubble acoustic emissions (HD) and MR-evident BBB opening (P = 0.07) and associated interstitial changes (P < 0.01), demonstrating the unique capability to titrate the MB-FUS effects in gliomas. Importantly, we identified a 2.2-fold increase of fluorescein accumulation in MB-FUS–treated compared to untreated nonenhancing tumor tissues (P < 0.01) while accounting for vascular density. Collectively, this study demonstrates the capabilities of MB-FUS for safe, localized, controlled BBB opening and highlights the potential of this technology to improve the surgical and pharmacologic treatment of brain tumors.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1270
Author(s):  
Zhuqing Song ◽  
Xiuxian Huang ◽  
Jieqiong Wang ◽  
Feiyan Cai ◽  
Ping Zhao ◽  
...  

Glioblastoma (GBM) is the commonest form of primary brain tumor in the central nervous system, with median survival below 15 months and only a 25% two-year survival rate for patients. One of the major clinical challenges in treating GBM is the presence of the blood–brain barrier (BBB), which greatly limits the availability of therapeutic drugs to the tumor. Ultrasound-mediated BBB opening provides a promising approach to help deliver drugs to brain tumors. The use of temozolomide (TMZ) in the clinical treatment of GBM has been shown to be able to increase survival in patients with GBM, but this improvement is still trivial. In this study, we developed a liposomal temozolomide formulation (TMZ-lipo) and locally delivered these nanoparticles into GBM through ultrasound-mediated BBB opening technology, significantly suppressing tumor growth and prolonging tumor-bearing animal survival. No significant side effects were observed in comparison with control rats. Our study provides a novel strategy to improve the efficacy of TMZ against GBM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shan Wang ◽  
Zhongguo Song ◽  
Huiping Li ◽  
Guozhen Guo ◽  
Xiaoli Xi

AbstractThe blood–brain barrier (BBB) opening induced by electromagnetic pulses (EMPs) may be a drug delivery strategy of central nervous system (CNS) diseases. However, the mechanism of EMP-induced BBB opening is still ambiguous. Previous studies have shown the relation between the external field and the extent of BBB permeation (referred to as the effect), while the connection between the internal field and the effect remains unknown. Here, the influence of individual differences on the field distribution in the human brain with EMPs is investigated, the dielectric parameters of the specific anthropomorphic mannequin (SAM) and structural parameters of the spherical brain are adjusted, and the field distribution in the brain illuminated by EMPs at the frequency range of 0–0.5 GHz is simulated based on the Computer Simulation Technology (CST) Studio Suite. The results show that the average electric field in the brain is about 1/100–1/5 of the incident field within the studied frequency range, individual differences have little effect on the field distribution in the human brain; and thus, it is reliable to establish the connection between the internal field and the effect, which is of great theoretical significance for further study of the mechanism of an EMP on the brain.


2021 ◽  
Author(s):  
Ratneswary Sutharsan ◽  
Liyu Chen ◽  
Jonathan LF Lee ◽  
Esteban Cruz ◽  
Tishila Palliyaguru ◽  
...  

Rationale: The blood-brain barrier (BBB) while functioning as a gatekeeper of the brain, impedes cerebral drug delivery. An emerging technology to overcome this limitation is focused ultrasound (FUS). When FUS interacts with intravenously injected microbubbles (FUS+MB), the BBB opens, transiently allowing the access of therapeutic agents into the brain. However, the ultrasound parameters need to be tightly tuned: when the acoustic pressure is too low there is no opening, and when it is too high, bleeds can occur. We therefore asked whether BBB permeability can be increased by combining FUS+MB with a second modality such that in a clinical setting lower acoustic pressures could be potentially used. Methods: Given that FUS achieves BBB opening by the disruption of tight junction (TJ) proteins such as claudin-5 of brain endothelial cells, we generated a stable MDCK II cell line (eGFP-hCldn5-MDCK II) that expresses fluorescently tagged human claudin-5. Two claudin-5 binders, mC5C2 (a peptide) and cCPEm (a truncated form of an enterotoxin), that have been reported previously to weaken the barrier, were synthesized and assessed for their abilities to enhance the permeability of cellular monolayers. We then performed a comparative analysis of single and combination treatments. Results: We successfully generated a novel cell line that formed functional monolayers as validated by an increased transendothelial electrical resistance (TEER) reading and a low (< 0.2%) permeability to sodium fluorescein (376 Da). We found that the binders exerted a time- and concentration-dependent effect on BBB opening when incubated over an extended period, whereas FUS+MB caused a rapid barrier opening followed by recovery after 12 hours within the tested pressure range. Importantly, preincubation with cCPEm prior to FUS+MB treatment resulted in greater barrier opening compared to either FUS+MB or cCPEm alone as measured by reduced TEER values and an increased permeability to fluorescently labelled 40 kDa dextran (FD40). Conclusion: The data suggest that pre-incubation with clinically suitable binders to TJ proteins may be a general strategy to facilitate safer and more effective ultrasound-mediated BBB opening in cellular and animal systems and potentially also for the treatment of human diseases of the brain.


Sign in / Sign up

Export Citation Format

Share Document