Combined MRI and PET imaging in brain stem mass lesions: diagnostic yield in a series of 30 stereotactically biopsied patients

2000 ◽  
Vol 93 (6) ◽  
pp. 951-957 ◽  
Author(s):  
Nicolas Massager ◽  
Philippe David ◽  
Serge Goldman ◽  
Benoît Pirotte ◽  
David Wikler ◽  
...  

Object. In the management of brainstem lesions, the place of stereotactic biopsy sampling remains debatable. The authors compared the results of magnetic resonance (MR) imaging, positron emission tomography (PET) scanning, and histological studies obtained in 30 patients who underwent MR imaging— and PET-guided stereotactic biopsy procedures for a brainstem mass lesion.Methods. Between July 1991 and December 1998, 30 patients harboring brainstem mass lesions underwent a stereotactic procedure in which combined MR imaging and PET scanning guidance were used. Positron emission tomography scanning was performed using [18F]fluorodeoxyglucose in 16 patients, methionine in two patients, and both tracers in 12 patients. Definite diagnosis was established on histological examination of the biopsy samples. Interpretation of MR imaging findings only or PET findings only was in agreement with the histological diagnosis in 63% and 73% of cases, respectively. Magnetic resonance imaging and PET findings were concordant in 19 of the 30 cases; in those cases, imaging data correlated with histological findings in 79%. Treatment based on information derived from MR imaging was concordant with therapy based on histological findings in only 17 patients (57%). Combining MR imaging and PET scanning data, the concordance between the neuroimaging-based treatment and treatments based on histological findings increased to 19 patients (63%). In seven patients who underwent biopsy procedures with one PET-defined and one MR imaging—defined trajectory, at histological examination the PET-guided samples were more representative of the tumor's nature and grade than the MR imaging—guided samples in four cases (57%). In 18 patients PET scanning was used to define a biopsy target and provided a diagnostic yield in 100% of the cases.Conclusions. Although the use of combined PET and MR imaging improves radiological interpretation of a mass lesion in the brainstem, it does not accurately replace histological diagnosis that is provided by a stereotactically obtained biopsy sample. Combining information provided by MR imaging and PET scanning in stereotactic conditions improves the accuracy of targeting and the diagnostic yield of the biopsy sample; an MR imaging— and PET-guided stereotactic biopsy procedure is a safe and efficient modality for the management of mass lesions of the brainstem.

2000 ◽  
Vol 8 (2) ◽  
pp. 1-6 ◽  
Author(s):  
Nicolas Massager ◽  
Philippe David ◽  
Serge Goldman ◽  
Benoît Pirotte ◽  
David Wikler ◽  
...  

In the management of brainstem lesions, the place of stereotactic biopsy sampling remains debatable. The authors compared the results of magnetic resonance (MR) imaging, positron emission tomography (PET), and histological findings obtained in 30 patients who underwent an MR image– and PET-guided stereotactic biopsy procedure for a brainstem mass lesion. Between July 1991 and December 1998, 30 patients harboring a brainstem mass lesion underwent a stereotactic procedure in which combined MR imaging and PET guidance was used. Positron emission tomography scanning was performed using [18F]-fluorodeoxyglucose in 16 patients, methionine in two patients, and with both tracers in 12 patients. Definite diagnosis was established on histological examination of the biopsy samples. Interpretation of MR imaging findings only or PET findings only were in agreement with the histological diagnosis in 63% and 73% of cases, respectively. Magnetic resonance imaging and PET findings were concordant in 19 of the 30 cases; in those cases, imaging data correlated with histological findings in 79%. In seven patients who underwent one PET-defined and one MR imaging–defined trajectory, at histological examination the PET-guided samples were more representative of the tumor's nature and grade than the MR imaging–guided samples in four cases (57%). In 18 patients PET scanning was used to define a biopsy target and provided a diagnostic yield in 100% of the cases. Although the use of combined PET and MR imaging improves radiological interpretation of a mass lesion in the brainstem, it does not accurately replace histological diagnosis that is provided by a stereotactically obtained biopsy sample. Combined information provided by MR imaging and PET in stereotactic conditions improves the accuracy of targeting and the diagnostic yield of the stereotactically biopsy sample; an MR imaging– and PET-guided stereotactic biopsy procedure is a safe and efficient modality for the management of mass lesions of the brainstem.


2003 ◽  
Vol 99 (3) ◽  
pp. 474-479 ◽  
Author(s):  
Toshihiko Hara ◽  
Tatsuya Kondo ◽  
Tetsuo Hara ◽  
Noboru Kosaka

Object. Neuroimaging-guided stereotactic biopsy procedures are commonly used for diagnosis of gliomas. A number of the imaging modalities currently in use are not reliable enough in depicting these tumors. The authors developed 18F-choline and 11C-choline as tumor imaging agents for positron emission tomography (PET) scanning, and used them to visualize gliomas prior to stereotactic biopsy procedures. Methods. The PET studies were performed in 12 patients who were thought to be affected by gliomas observed on computerized tomography and magnetic resonance images. The 18F- and 11C-choline were injected separately, and the PET scanning was started 5 and 20 minutes postinjection. The PET scans gave quantitative information about the distribution of 18F- and 11C-choline in the brain. The tumor uptake was constant between 5 and 20 minutes with both agents. Stereotactic biopsy sampling was performed to obtain tissues from the most radioactive areas on the PET scan; histological diagnoses were made using these tissues. The results were as follows: oligodendroglioma was found in two patients, astrocytoma in one, anaplastic astrocytoma in two, and glioblastoma in seven. Conclusions. The uptake of contrast agents was always low in low-grade gliomas, and the uptake in high-grade glioma was always high. The tumor/normal (T/N) ratio of 18F-choline was 10.5:12 in anaplastic astrocytoma and 13.2:21 in glioblastoma. The 18F-choline yielded slightly superior results compared with 11C-choline with regard to the T/N ratio. In one case of oligodendroglioma the tumor showed no uptake of 18F- and 11C-choline. With this exception, the PET scans of gliomas in which 18F- and 11C-choline contrast agents were added would guide the approach to the most malignant areas for stereotactic biopsy sampling.


2002 ◽  
Vol 97 ◽  
pp. 542-550 ◽  
Author(s):  
Marc Levivier ◽  
David Wikler ◽  
Nicolas Massager ◽  
Philippe David ◽  
Daniel Devriendt ◽  
...  

Object. The authors review their experience with the clinical development and routine use of positron emission tomography (PET) during stereotactic procedures, including the use of PET-guided gamma knife radiosurgery (GKS). Methods. Techniques have been developed for the routine use of stereotactic PET, and accumulated experience using PET-guided stereotactic procedures over the past 10 years includes more than 150 stereotactic biopsies, 43 neuronavigation procedures, and 34 cases treated with GKS. Positron emission tomography—guided GKS was performed in 24 patients with primary brain tumors (four pilocytic astrocytomas, five low-grade astrocytomas or oligodendrogliomas, seven anaplastic astrocytomas or ependymomas, five glioblastomas, and three neurocytomas), five patients with metastases (single or multiple lesions), and five patients with pituitary adenomas. Conclusions. Data obtained with PET scanning can be integrated with GKS treatment planning, enabling access to metabolic information with high spatial accuracy. Positron emission tomography data can be successfully combined with magnetic resonance imaging data to provide specific information for defining the target volume for the radiosurgical treatment in patients with recurrent brain tumors, such as glioma, metastasis, and pituitary adenoma. This approach is particularly useful for optimizing target selection for infiltrating or ill-defined brain lesions. The use of PET scanning contributed data in 31 cases (93%) and information that was specifically utilized to adapt the target volume in 25 cases (74%). It would seem that the integration of PET data into GKS treatment planning may represent an important step toward further developments in radiosurgery: this approach provides additional information that may open new perspectives for the optimization of the treatment of brain tumors.


1999 ◽  
Vol 90 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Richard G. Bittar ◽  
André Olivier ◽  
Abbas F. Sadikot ◽  
Frederick Andermann ◽  
Roch M. Comeau ◽  
...  

Object. To investigate the utility of [15O]H2O positron emission tomography (PET) activation studies in the presurgical mapping of primary somatosensory cortex, the authors compared the magnitude and location of activation foci obtained using PET scanning with the results of intraoperative cortical stimulation (ICS).Methods. The authors used PET scanning and vibrotactile stimulation (of the face, hand, or foot) to localize the primary somatosensory cortex before surgical resection of mass lesions or epileptogenic foci affecting the central area in 20 patients. With the aid of image-guided surgical systems, the locations of significant activation foci on PET scanning were compared with those of positive ICS performed at craniotomy after the patient had received a local anesthetic agent. In addition, the relationship between the magnitude and statistical significance of blood flow changes and the presence of positive ICS was examined.In 22 (95.6%) of 23 statistically significant (p < 0.05) PET activation foci, spatially concordant sites on ICS were also observed. Intraoperative cortical stimulation was positive in 40% of the PET activation studies that did not result in statistically significant activation. In the patients showing these results, there was a clearly identifiable t-statistic peak that was spatially concordant with the site of positive ICS in the sensorimotor area. All PET activation foci with a t statistic greater than 4.75 were associated with spatially concordant sites of positive ICS. All PET activation foci with a t statistic less than 3.2 were associated with negative ICS.Conclusions. Positron emission tomography is an accurate method for mapping the primary somatosensory cortex before surgery. The need for ICS, which requires local anesthesia, may be eliminated when PET foci with high (> 4.75) or low (< 3.20) t-statistic peaks are elicited by vibrotactile stimulation.


1999 ◽  
Vol 91 (6) ◽  
pp. 915-921 ◽  
Author(s):  
Richard G. Bittar ◽  
André Olivier ◽  
Abbas F. Sadikot ◽  
Frederick Andermann ◽  
G. Bruce Pike ◽  
...  

Object. Accurate identification of eloquent cortex is important to ensure that resective surgery in the region surrounding the central sulcus is performed with minimum risk of permanent neurological deficit. Functional localization has traditionally been accomplished using intraoperative cortical stimulation (ICS). However, this technique suffers from several disadvantages that make the development and validation of noninvasive methods desirable. Functional localization accomplished by activation studies in which positron emission tomography (PET) scanning and the tracer [15O]H2O have been used has been shown to correlate well with the results of ICS. Another noninvasive method for functional localization is functional magnetic resonance (fMR) imaging. We compared the locations of activation peaks obtained in individual patients using fMR and [15O]H2O PET imaging.Methods. Twenty-six combined PET activation—fMR imaging studies were performed in 11 patients who were admitted for evaluation before undergoing surgery in the region surrounding the central sulcus. The PET scans were obtained using bolus injections of the cerebral blood flow tracer [15O]H2O (10 mCi). Multislice T2*-weighted gradient-echo echoplanar images were acquired using a 1.5-tesla MR imaging system. Activation maps were aligned with anatomical MR images and transformed into stereotactic space, after which the locations of activation peaks obtained using both modalities were compared. The average distance between activation peaks obtained using fMR imaging and those obtained using PET imaging was 7.9 ± 4.8 mm (p > 0.05), with 96% of the peaks being located on either the same or adjacent sulci and gyri. Overlapping of voxels activated by each modality occurred in 92% of the studies. Functional MR imaging failed to activate the primary sensorimotor cortex in one study and produced results that were ambiguous in the clinical setting in three cases.Conclusions. Overall, fMR imaging produced activation that correlated well with that obtained using PET scanning. Discrepancies between the sites of activation identified using these two techniques may reflect differences in their physiological bases.


2004 ◽  
Vol 101 (3) ◽  
pp. 476-483 ◽  
Author(s):  
Benoit Pirotte ◽  
Serge Goldman ◽  
Nicolas Massager ◽  
Philippe David ◽  
David Wikler ◽  
...  

Object. The aim of this study was to compare the contribution of the tracers 11C-methionine (Met) and 18F-fluorodeoxyglucose (FDG) in positron emission tomography (PET)—guided stereotactic brain biopsy. Methods. Forty-five patients underwent combined Met-PET and FDG-PET studies associated with computerized tomography (CT)— or magnetic resonance (MR)—guided stereotactic biopsy. Each patient presented with a lesion that was in proximity to the cortical or subcortical gray matter. The Met-PET and FDG-PET scans were analyzed to determine which tracer offers the best information to guide at least one stereotactic biopsy trajectory. Histologically based diagnoses were rendered in all patients (39 tumors, six nontumorous lesions) and biopsies were performed in all tumors with the aid of PET guidance. When tumor FDG uptake was higher than that in the gray matter (18 tumors), FDG was used for target definition. When FDG uptake was absent or equivalent to that in the gray matter (21 tumors), Met was used for target definition. Parallel review of all histological and imaging data showed that all tumors had an area of abnormal Met uptake and 33 had abnormal FDG uptake. All six nontumorous lesions had no Met uptake and biopsies were performed using CT or MR guidance only. All tumor trajectories had an area of abnormal Met uptake; all nondiagnostic trajectories in tumors had no abnormal Met uptake. Conclusions. When FDG shows limitations in target selection, Met is a good alternative because of its high specificity in tumors. Moreover, in the context of a single-tracer procedure and regardless of FDG uptake, Met is a better choice for PET guidance in neurosurgical procedures.


1995 ◽  
Vol 82 (3) ◽  
pp. 445-452 ◽  
Author(s):  
Marc Levivier ◽  
Serge Goldman ◽  
Benoît Pirotte ◽  
Jean-Marie Brucher ◽  
Danielle Balériaux ◽  
...  

✓ The aim of the present study was to determine whether routine integration of positron emission tomography (PET) with 18F-labeled fluorodeoxyglucose (FDG) in the planning of stereotactic brain biopsy increases the technique's diagnostic yield. Forty-three patients underwent combined FDG-PET— and computerized tomography (CT)-guided stereotactic biopsy of intracranial lesions according to a previously described technique. In 36 patients, an area of abnormal FDG uptake was used to guide at least one stereotactic biopsy trajectory. A total of 90 stereotactic trajectories were performed; among them, 55 were based on FDG-PET—defined targets and 35 were based on CT-defined targets. Histological diagnosis was obtained in all patients, but six of the 90 trajectories were nondiagnostic; all six were based on targets defined by CT only. Differences between the diagnostic yield of trajectories based on FDG-PET—defined targets and those based on CT-defined targets were statistically significant in patients with contrast-enhanced lesions, but not in patients with nonenhancing lesions. These results support the view the FDG-PET may contribute to the successful management of brain tumor patients requiring stereotactic biopsy. Because no significant increase in discomfort or morbidity related to the technique was found, it is suggested that the development of similar techniques integrating PET data in the planning of stereotactic biopsy should be considered by centers performing stereotactic surgery and having access to PET technology.


2005 ◽  
Vol 102 (2) ◽  
pp. 318-327 ◽  
Author(s):  
Frank Willi Floeth ◽  
Dirk Pauleit ◽  
Hans-Jörg Wittsack ◽  
Karl Josef Langen ◽  
Guido Reifenberger ◽  
...  

Object. The purpose of this study was to determine the predictive value of [18F]fluoroethyl-l-tyrosine (FET)—positron emission tomography (PET) and magnetic resonance (MR) spectroscopy for tumor diagnosis in patients with suspected gliomas. Methods. Both FET-PET and MR spectroscopy analyses were performed in 50 consecutive patients with newly diagnosed intracerebral lesions supposed to be diffuse gliomas on contrast-enhanced MR imaging. Lesion/brain ratios of FET uptake greater than 1.6 were considered positive, that is, indicative of tumor. Results of MR spectroscopy were considered positive when N-acetylaspartate (NAA) was decreased in conjunction with an absolute increase of choline (Cho) and an NAA/Cho ratio of 0.7 or less. An FET lesion/brain ratio, an NAA/Cho ratio, and signal abnormalities on MR images were compared with histological findings in neuronavigated biopsy specimens. The FET lesion/brain ratio and the NAA/Cho ratio were identified as significant independent predictors for the histological identification of tumor tissue. The accuracy in distinguishing neoplastic from nonneoplastic tissue could be increased from 68% with the use of MR imaging alone to 97% with MR imaging in conjunction with FET-PET and MR spectroscopy. Sensitivity and specificity for tumor detection were 100 and 81% for MR spectroscopy and 88 and 88% for FET-PET, respectively. Results of histological studies did not reveal tumor tissue in any of the lesions that were negative on FET-PET and MR spectroscopy. In contrast, a tumor diagnosis was made in 97% of the lesions that were positive with both methods. Conclusions. In patients with intracerebral lesions supposed to be diffuse gliomas on MR imaging, FET-PET and MR spectroscopy analyses markedly improved the diagnostic efficacy of targeted biopsies.


2006 ◽  
Vol 104 (2) ◽  
pp. 238-253 ◽  
Author(s):  
Benoît Pirotte ◽  
Serge Goldman ◽  
Olivier Dewitte ◽  
Nicolas Massager ◽  
David Wikler ◽  
...  

Object The aim of this study was to evaluate the integration of positron emission tomography (PET) scanning data into the image-guided resection of brain tumors. Methods Positron emission tomography scans obtained using fluorine-18 fluorodeoxyglucose (FDG) and l-[methyl-11C]methionine (MET) were combined with magnetic resonance (MR) images in the navigational planning of 103 resections of brain tumors (63 low-grade gliomas [LGGs] and 40 high-grade gliomas [HGGs]). These procedures were performed in 91 patients (57 males and 34 females) in whom tumor boundaries could not be accurately identified on MR images for navigation-based resection. The level and distribution of PET tracer uptake in the tumor were analyzed to define the lesion contours, which in turn yielded a PET volume. The PET scanning–demonstrated lesion volume was subsequently projected onto MR images and compared with MR imaging data (MR volume) to define a final target volume for navigation-based resection—the tumor contours were displayed in the microscope’s eyepiece. Maximal tumor resection was accomplished in each case, with the intention of removing the entire area of abnormal metabolic activity visualized during surgical planning. Early postoperative MR imaging and PET scanning studies were performed to assess the quality of tumor resection. Both pre- and postoperative analyses of MR and PET images revealed whether integrating PET data into the navigational planning contributed to improved tumor volume definition and tumor resection. Metabolic information on tumor heterogeneity or extent was useful in planning the surgery. In 83 (80%) of 103 procedures, PET studies contributed to defining a final target volume different from that obtained with MR imaging alone. Furthermore, FDG-PET scanning, which was performed in a majority of HGG cases, showed that PET volume was less extended than the MR volume in 16 of 21 cases and contributed to targeting the resection to the hypermetabolic (anaplastic) area in 11 (69%) of 16 cases. Performed in 59 LGG cases and 23 HGG cases, MET-PET demonstrated that the PET volume did not match the MR volume and improved the tumor volume definition in 52 (88%) of 59 and 18 (78%) of 23, respectively. Total resection of the area of increased PET tracer uptake was achieved in 54 (52%) of 103 procedures. Conclusions Imaging guidance with PET scanning provided independent and complementary information that helped to assess tumor extent and plan tumor resection better than with MR imaging guidance alone. The PET scanning guidance could help increase the amount of tumor removed and target image-guided resection to tumor portions that represent the highest evolving potential.


2000 ◽  
Vol 92 (6) ◽  
pp. 1009-1015 ◽  
Author(s):  
Seiji Yamamoto ◽  
Weiyu Teng ◽  
Shigeru Nishizawa ◽  
Takeharu Kakiuchi ◽  
Hideo Tsukada

Object. The hydroxyl radical scavenger (±)-N,N′-propylenedinicotinamide (AVS) has been shown to ameliorate the occurrence of vasospasm following experimental subarachnoid hemorrhage (SAH) and to reduce the incidence of delayed ischemic neurological deficits (DINDs) in patients with SAH. The authors investigated whether prophylactic administration of AVS could improve cerebral blood flow (CBF) and cerebral glucose utilization (CGU) following SAH in rats.Methods. Anesthetized rats were subjected to intracisternal injection of blood (SAH group) or saline (control group). Either AVS (1 mg/kg/min) or saline (vehicle group) was continuously injected into the rat femoral vein. Forty-eight hours later, positron emission tomography scanning was used with the tracers 15O-H2O and 18F-2-fluoro-d-glucose to analyze quantitatively CBF and CGU, respectively, in the frontoparietal and occipital regions (12 regions of interest/group).In SAH rats receiving only vehicle, CBF decreased significantly (p < 0.05, Tukey's test) and CGU tended to decrease, compared with values obtained in control (non-SAH) rats receiving vehicle. In rats that were subjected to SAH, administration of AVS significantly (p < 0.05, Tukey's test) improved CBF and CGU in both the frontoparietal and occipital regions compared with administration of vehicle alone.Conclusions. Prophylactic administration of AVS improves CBF and CGU in the rat brain subjected to SAH, and can be a good pharmacological treatment for the prevention of DINDs following SAH.


Sign in / Sign up

Export Citation Format

Share Document