Use of diffusion-weighted magnetic resonance imaging in differentiating purulent brain processes from cystic brain tumors

2002 ◽  
Vol 97 (5) ◽  
pp. 1101-1107 ◽  
Author(s):  
Raphael Guzman ◽  
Alain Barth ◽  
Karl-Olof Lövblad ◽  
Marwan El-Koussy ◽  
Joachim Weis ◽  
...  

Object. Brain abscesses and other purulent brain processes represent potentially life-threatening conditions for which immediate correct diagnosis is necessary to administer treatment. Distinguishing between cystic brain tumors and abscesses is often difficult using conventional imaging methods. The authors' goal was to study the ability of diffusion-weighted (DW) magnetic resonance (MR) imaging to differentiate between these two pathologies in patients within the clinical setting. Methods. Diffusion-weighted MR imaging studies and calculation of the apparent diffusion coefficient (ADC) values were completed in a consecutive series of 16 patients harboring surgically verified purulent brain processes. This study group included 11 patients with brain abscess (one patient had an additional subdural hematoma and another also had ventriculitis), two with subdural empyema, two with septic embolic disease, and one patient with ventriculitis. Data from these patients were compared with similar data obtained in 16 patients matched for age and sex, who harbored surgically verified neoplastic cystic brain tumors. In patients with brain abscess, subdural empyema, septic emboli, and ventriculitis, these lesions appeared hyperintense on DW MR images, whereas in patients with tumor, the lesion was visualized as a hypointense area. The ADC values calculated in patients with brain infections (mean 0.68 × 103 mm2/sec) were significantly lower than those measured in patients with neoplastic lesions (mean 1.63 × 103 mm2/sec; p < 0.05). Conclusions. Diffusion-weighted MR imaging can be used to identify infectious brain lesions and can help to differentiate between brain abscess and cystic brain tumor, thus making it a strong additional imaging modality in the early diagnosis of central nervous system purulent brain processes.

1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


1997 ◽  
Vol 86 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Tali Siegal ◽  
Rina Rubinstein ◽  
Tzahala Tzuk-Shina ◽  
John M. Gomori

✓ It was recently demonstrated that imaging of brain tumors by relative cerebral blood volume (CBV) maps reconstructed from dynamic magnetic resonance (MR) data provide similar diagnostic information compared to positron emission tomography (PET) or 201Tl single-photon emission computerized tomography (201Tl-SPECT) scans. The authors used relative CBV mapping for routine follow-up evaluation of patients with brain tumors and compared its sensitivity to diagnostic MR imaging, 201Tl-SPECT and clinical assessment. Fifty-nine patients were prospectively followed using 191 concomitant studies of dual section relative CBV maps, MR imaging, 201Tl-SPECT, and neurological evaluations. Studies were repeated every 2 to 3 months (median three evaluations/patient). The relative CBV maps were graded as relative CBV 0 to 4, where Grades 3 and 4 are indicative of proliferating tumors (four = rapid leak). There were 44 high-grade and 15 low-grade tumors followed during treatment. During the follow-up period a change in relative CBV grade was observed in 56% of the patients, revealing an increasing grade in 72% of them. The rapid leak phenomenon was detected in 35% of all studies and in 81% of those with a worsening relative CBV grade. Tumor progression was detected earlier by relative CBV maps as follows: earlier than MR imaging in 32% of the studies (earlier by a median of 4.5 months; p < 0.01); earlier than 201Tl-SPECT in 63% (median 4.5 months; p < 0.01), and earlier than clinical assessment in 55% (median 6 months; p < 0.01). In 82% of studies with positive MR imaging but negative 201Tl-SPECT, the lesions were smaller than 1.5 cm. The relative CBV maps clearly delineated the appearance of rapid leak in these lesions. Routine use of relative CBV maps that can be implemented on any high-field MR unit and added to the regular MR evaluation provides useful functional information in patients with brain tumors. When used as an adjunct follow-up evaluation it proved more sensitive than the other modalities for early prediction of tumor growth. It is very sensitive to small regional changes, unlike functional imaging such as PET or SPECT scans. Based on previous experience with 76 regional CBV studies, the authors conclude that regional CBV mapping correlates with active tumor and it may separate enhancing scar and radiation injury from infiltrative tumor. A new effect named the rapid leak phenomenon was also observed; this phenomenon, as identified on the regional CBV maps, correlates with high malignancy.


2004 ◽  
Vol 100 (5) ◽  
pp. 835-841 ◽  
Author(s):  
Teruo Kimura ◽  
Kazuhiro Sako ◽  
Kunio Tanaka ◽  
Takumi Gotoh ◽  
Hiroshi Yoshida ◽  
...  

Object. The goal of this study was to investigate the usefulness of proton (1H) magnetic resonance (MR) spectroscopy to evaluate the response of metastatic brain tumors to stereotactic radiosurgery (SRS) in comparison with Gd-enhanced MR imaging and single-photon emission computerized tomography with administration of thallium-201 chloride (201TlCl-SPECT). Methods. Forty patients with a total of 47 metastatic brain tumors were evaluated. The primary lesion was identified in all cases. Stereotactic radiosurgery was effective in 37 lesions. All patients were examined using Gd-enhanced MR imaging before and after SRS. Thalium-201 chloride was administered to 27 patients with 34 tumors and SPECT images were obtained. Proton MR spectroscopy was performed in 36 patients who harbored 43 tumors. On Gd-enhanced MR images, a decrease in the volume of the Gd-enhanced lesion and a change in the enhanced effect in the lesion after treatment were recognized as showing the effectiveness of SRS between 1 and 3 months or more (mean 8.54 ± 3.58 weeks). In 201TlCl-SPECT studies, the ratio of lesion to normal brain decreased from 2 weeks to 2 months (mean 5.03 ± 2.77 weeks) after radiosurgery. On 1H-MR spectroscopy images a high choline (Cho) peak and a lipiddominant (Lip) peak were observed in 25 lesions and a high Cho peak and a lactate-dominant (Lac) peak were observed in 12 lesions before SRS. A decrease in the Cho peak, a disappearance of the Lac peak, and an increase in the Lip peak were observed between 1 week and 1 month (mean 2.76 ± 1.62 weeks) after treatment. Conclusions. Based on histopathological findings obtained at autopsy or at surgery, we assume that a high Cho peak may be observed in viable tumor tissue and a Lip peak in areas of necrosis. The results indicate that 1H-MR spectroscopy is potentially a more sensitive tool in evaluating the response to SRS than 201TlCl-SPECT or Gd-enhanced MR imaging and that it can be used earlier for this purpose than those other imaging methods.


2004 ◽  
Vol 100 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Vaijayantee Kulkarni ◽  
Vedantam Rajshekhar ◽  
Lakshminarayan Raghuram

Object. The authors studied whether cervical spine motion segments adjacent to a fused segment exhibit accelerated degenerative changes on short-term follow-up magnetic resonance (MR) imaging. Methods. Preoperative and short-term follow-up (mean duration 17.5 months, range 10–48 months) cervical MR images obtained in 44 patients who had undergone one- or two-level corpectomy for cervical spondylotic myelopathy were evaluated qualitatively and quantitatively. The motion segment adjacent to the fused segment and a segment remote from the fused segment were evaluated for indentation of the thecal sac, disc height, and sagittal functional diameter of the spinal canal on midsagittal T2-weighted MR images. Thecal sac indentations were classifed as mild, moderate, and severe. New indentations of the thecal sac of varying severity (mild in 17 patients [38.6%], moderate in 10 [22.7%], and severe in six [13.6%]) had developed at the adjacent segments in 33 (75%) of 44 patients. The degenerative changes were seen at the superior level in 11 patients, inferior level in 10 patients, and at both levels in 12 patients and resulted from both anterior and posterior element degeneration in the majority (23 [69.6%]) of patients. The remote segments showed mild thecal sac indentations in seven patients and moderate indentations in two patients (nine [20.5%] of 44). Compared with the changes at the remote segment, the canal size was significantly decreased at the superior adjacent segment by 0.9 mm (p = 0.007). No patient sustained a new neurological deficit due to adjacent-segment changes. Conclusions. On short-term follow-up MR imaging, levels adjacent to the fused segment exhibited more pronounced degenerative changes (compared with remote levels) in 75% of patients who had undergone one- or two-level central corpectomy.


2002 ◽  
Vol 97 (3) ◽  
pp. 591-597 ◽  
Author(s):  
Emmanuel Cuny ◽  
Dominique Guehl ◽  
Pierre Burbaud ◽  
Christian Gross ◽  
Vincent Dousset ◽  
...  

Object. The goal of this study was to determine the most suitable procedure(s) to localize the optimal site for high-frequency stimulation of the subthalamic nucleus (STN) for the treatment of advanced Parkinson disease. Methods. Stereotactic coordinates of the STN were determined in 14 patients by using three different methods: direct identification of the STN on coronal and axial T2-weighted magnetic resonance (MR) images and indirect targeting in which the STN coordinates are referred to the anterior commissure—posterior commissure (AC—PC) line, which, itself, is determined either by using stereotactic ventriculography or reconstruction from three-dimensional (3D) MR images. During the surgical procedure, electrode implantation was guided by single-unit microrecordings on multiple parallel trajectories and by clinical assessment of stimulations. The site where the optimal functional response was obtained was considered to be the best target. Computerized tomography scanning was performed 3 days later and the scans were combined with preoperative 3D MR images to transfer the position of the best target to the same system of stereotactic coordinates. An algorithm was designed to convert individual stereotactic coordinates into an all-purpose PC-referenced system for comparing the respective accuracy of each method of targeting, according to the position of the best target. Conclusions. The target that is directly identified by MR imaging is more remote (mainly in the lateral axis) from the site of the optimal functional response than targets obtained using other procedures, and the variability of this method in the lateral and superoinferior axes is greater. In contrast, the target defined by 3D MR imaging is closest to the target of optimal functional response and the variability of this method is the least great. Thus, 3D reconstruction adjusted to the AC—PC line is the most accurate technique for STN targeting, whereas direct visualization of the STN on MR images is the least effective. Electrophysiological guidance makes it possible to correct the inherent inaccuracy of the imaging and surgical techniques and is not designed to modify the initial targeting.


1988 ◽  
Vol 68 (2) ◽  
pp. 246-250 ◽  
Author(s):  
Gene H. Barnett ◽  
Allan H. Ropper ◽  
Keith A. Johnson

✓ Magnetic resonance (MR) imaging has been largely restricted to patients who are neurologically and hemodynamically stable. The strong magnetic field and radiofrequency transmissions involved in acquiring images are potential sources of interference with monitoring equipment. A method of support and physiological monitoring of critically ill neurosurgical and neurological patients during MR imaging using a 0.6-tesla MR system is reported. This technique has not caused degradation of the MR image due to electrical interference. Adequate preparation and precautions allow many critically ill neurosurgical and neurological patients to safely undergo MR imaging.


1999 ◽  
Vol 91 (3) ◽  
pp. 384-390 ◽  
Author(s):  
Faruk İldan ◽  
Metin Tuna ◽  
Alp İskender Göcer ◽  
Bülent Boyar ◽  
Hüseyin Bağdatoğlu ◽  
...  

Object. The authors examined the relationships of brain—tumor interfaces, specific magnetic resonance (MR) imaging features, and angiographic findings in meningiomas to predict tumor cleavage and difficulty of resection.Methods. Magnetic resonance imaging studies, angiographic data, operative reports, clinical data, and histopathological findings were examined retrospectively in this series, which included 126 patients with intracranial meningiomas who underwent operations in which microsurgical techniques were used. The authors have identified three kinds of brain—tumor interfaces characterized by various difficulties in microsurgical dissection: smooth type, intermediate type, and invasive type. The signal intensity on T1-weighted MR images was very similar regardless of the type of brain—tumor interface (p > 0.1). However, on T2-weighted images the different interfaces seemed to correlate very precisely with the signal intensity and the amount of peritumoral edema (p < 0.01), allowing the prediction of microsurgical effort required during surgery. On angiographic studies, the pial—cortical arterial supply was seen to participate almost equally with the meningeal—dural arterial supply in vascularizing the tumor in 57.9% of patients. Meningiomas demonstrating hypervascularization on angiography, particularly those fed by the pial—cortical arteries, exhibited significantly more severe edema compared with those supplied only from meningeal arteries (p < 0.01). Indeed, a positive correlation was found between the vascular supply from pial—cortical arteries and the type of cleavage (p < 0.05).Conclusions. In this analysis the authors proved that there is a strong correlation between the amount of peritumoral edema, hyperintensity of the tumor on T2-weighted images, cortical penetration, vascular supply from pial—cortical arteries, and cleavage of the meningioma. Therefore, the consequent difficulty of microsurgical dissection can be predicted preoperatively by analyzing MR imaging and angiographic studies.


2000 ◽  
Vol 93 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Henry W. S. Schroeder ◽  
Christiane Schweim ◽  
Klaus H. Schweim ◽  
Michael R. Gaab

Object. The purpose of this prospective study was to evaluate aqueductal cerebrospinal fluid (CSF) flow after endoscopic aqueductoplasty. In all patients, preoperative magnetic resonance (MR) imaging revealed hydrocephalus caused by aqueductal stenosis and lack of aqueductal CSF flow.Methods. In 14 healthy volunteers and in eight patients with aqueductal stenosis who had undergone endoscopic aqueductoplasty, aqueductal CSF flow was investigated using cine cardiac-gated phase-contrast MR imaging. For qualitative evaluation of CSF flow, the authors used an in-plane phase-contrast sequence in the midsagittal plane. The MR images were displayed in a closed-loop cine format. Quantitative through-plane measurements were performed in the axial plane perpendicular to the aqueduct. Evaluation revealed no significant difference in aqueductal CSF flow between healthy volunteers and patients with regard to temporal parameters, CSF peak and mean velocities, mean flow, and stroke volume. All restored aqueducts have remained patent 7 to 31 months after surgery.Conclusions. Aqueductal CSF flow after endoscopic aqueductoplasty is similar to aqueductal CSF flow in healthy volunteers. The data indicate that endoscopic aqueductoplasty seems to restore physiological aqueductal CSF flow.


2005 ◽  
Vol 3 (5) ◽  
pp. 342-347 ◽  
Author(s):  
Chris J. Neal ◽  
Michael K. Rosner ◽  
Timothy R. Kuklo

Object. Disc arthroplasty in the lumbar spine is an alternative to fusion when treating discogenic pain. Its theoretical benefits include preservation of the motion segment and the potential prevention of adjacent-segment degeneration. Despite the need to evaluate the benefit of preserving the adjacent segments after disc replacement, no study has been conducted to assess the ability of magnetic resonance (MR) imaging to depict the adjacent segments in patients who have undergone disc replacement surgery. Methods. Postoperative lumbar MR images were obtained in the first 10 patients in whom a metal-on-metal disc arthroplasty system was used to treat the L4–5 or L5—S1 levels. At the superior adjacent level, the superior endplate and disc space were demonstrated on 90% of the images on both T1-weighted fluid-attenuated inversion-recovery (FLAIR) and T2-weighted sequences despite the presence of artifacts. The inferior endplate at this level was documented on 70% of both T1-weighted FLAIR and T2-weighted sequences. At the level below the disc replacement in patients who underwent L4–5 surgery, the superior endplate was demonstrated on 66.7% of the T1-weighted FLAIR sequences but only 33.3% of the T2-weighted images. The disc space and inferior endplate were depicted on 66.7% of both T1-weighted FLAIR and T2-weighted sequences. Axial images revealed an artifact in every adjacent space except at the L5—S1 level. Conclusions. Based on the results of this pilot study, it appears that sagittal MR imaging can be undertaken to evaluate the adjacent motion segment for degenerative changes following total disc arthroplasty in most patients. This imaging modality will provide an additional measure to assess the long-term efficacy of this intervention compared with other treatment modalities and the natural history of lumbar disc degeneration.


1998 ◽  
Vol 88 (4) ◽  
pp. 650-655 ◽  
Author(s):  
Yasuo Murai ◽  
Yukio Ikeda ◽  
Akira Teramoto ◽  
Yukihide Tsuji

Object. The aim of this study was to determine the usefulness of magnetic resonance (MR) imaging—documented extravasation as an indicator of continued hemorrhage in patients with acute hypertensive intracerebral hemorrhage (ICH). Methods. The authors studied 108 patients with acute hyperintensive ICH. Imaging modalities included noncontrast-enhanced computerized tomography (CT) scanning, gadolinium-enhanced MR imaging, and conventional cerebral angiography obtained within 6 hours after the onset of hemorrhage. A repeated CT scan was obtained within 48 hours to evaluate enlargement of the hematoma. Findings on MR imaging indicating extravasation, including any high-intensity signals on T1-weighted postcontrast images, were observed in 39 patients, and 17 of these also showed evidence of extravasation on cerebral angiography. The presence of extravasation on MR imaging was closely correlated with evidence of hematoma enlargement on follow-up CT scans (p < 0.001). Conclusions. Evidence of extravasation documented on MR imaging indicates persistent hemorrhage and correlates with enlargement of the hematoma.


Sign in / Sign up

Export Citation Format

Share Document