Asymptomatic microbleeds in moyamoya disease: T2*-weighted gradient-echo magnetic resonance imaging study

2005 ◽  
Vol 102 (3) ◽  
pp. 470-475 ◽  
Author(s):  
Ken-Ichiro Kikuta ◽  
Yasushi Takagi ◽  
Kazuhiko Nozaki ◽  
Takashi Hanakawa ◽  
Tsutomu Okada ◽  
...  

Object. The aim of this study was to investigate the incidence of asymptomatic microbleeds (MBs) in patients with moyamoya disease (MMD) by using a 3-tesla magnetic resonance (MR) imaging unit. Methods. Data on 63 patients hospitalized with MMD between 1999 and 2004 were retrospectively examined to determine the incidence of asymptomatic MBs. Gradient-echo T2*-weighted MR imaging studies obtained using 3- and 1.5-tesla units were available in 25 patients. These patients consisted of five men and 20 women, ranging in age from 17 to 66 years (mean age 41 ± 14 years). Ischemic MMD was diagnosed in 18 patients, and hemorrhagic MMD in seven. The incidence of MBs was also evaluated using the same 3-tesla MR imaging unit in 34 healthy volunteers including seven men and 27 women, ranging in age from 18 to 71 years (mean age 33 ± 12 years). Using the 3-tesla MR unit, asymptomatic MBs were demonstrated in 11 patients (44%); they were detected in seven patients (28%) by using the 1.5-tesla unit. In the 3-tesla MR studies in healthy individuals, MBs were found in two patients (5.8%). Based on 3-tesla MR studies, the incidence of MBs was significantly higher in patients with MMD compared with that in healthy individuals. Asymptomatic MBs were demonstrated in eight (44%) of 18 patients with ischemic MMD and three (43%) of seven patients with hemorrhagic MMD. Conclusions. Microbleeds are significantly more common in patients with MMD than in healthy individuals regardless of the disease type. The evaluation of MBs with T2*-weighted 3-tesla MR imaging might contribute to the treatment of MMD.

2004 ◽  
Vol 100 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Vaijayantee Kulkarni ◽  
Vedantam Rajshekhar ◽  
Lakshminarayan Raghuram

Object. The authors studied whether cervical spine motion segments adjacent to a fused segment exhibit accelerated degenerative changes on short-term follow-up magnetic resonance (MR) imaging. Methods. Preoperative and short-term follow-up (mean duration 17.5 months, range 10–48 months) cervical MR images obtained in 44 patients who had undergone one- or two-level corpectomy for cervical spondylotic myelopathy were evaluated qualitatively and quantitatively. The motion segment adjacent to the fused segment and a segment remote from the fused segment were evaluated for indentation of the thecal sac, disc height, and sagittal functional diameter of the spinal canal on midsagittal T2-weighted MR images. Thecal sac indentations were classifed as mild, moderate, and severe. New indentations of the thecal sac of varying severity (mild in 17 patients [38.6%], moderate in 10 [22.7%], and severe in six [13.6%]) had developed at the adjacent segments in 33 (75%) of 44 patients. The degenerative changes were seen at the superior level in 11 patients, inferior level in 10 patients, and at both levels in 12 patients and resulted from both anterior and posterior element degeneration in the majority (23 [69.6%]) of patients. The remote segments showed mild thecal sac indentations in seven patients and moderate indentations in two patients (nine [20.5%] of 44). Compared with the changes at the remote segment, the canal size was significantly decreased at the superior adjacent segment by 0.9 mm (p = 0.007). No patient sustained a new neurological deficit due to adjacent-segment changes. Conclusions. On short-term follow-up MR imaging, levels adjacent to the fused segment exhibited more pronounced degenerative changes (compared with remote levels) in 75% of patients who had undergone one- or two-level central corpectomy.


2001 ◽  
Vol 94 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Atsuko Harada ◽  
Yukihiko Fujii ◽  
Yuichiro Yoneoka ◽  
Shigekazu Takeuchi ◽  
Ryuichi Tanaka ◽  
...  

Object. The purpose of this study was to assess the utility of high-field magnetic resonance (MR) imaging as a quantitative tool for estimating cerebral circulation in patients with moyamoya disease. Methods. Eighteen patients with moyamoya disease who were scheduled to undergo revascularization surgery and 100 healthy volunteers were examined using T2-reversed MR imaging performed using a 3-tesla system. Ten of the 18 patients underwent a second study between 1 year and 3 years after revascularization. Magnetic resonance images obtained in the patients with moyamoya disease were statistically analyzed and compared with those obtained in healthy volunteers. The MR imaging findings were also correlated with results of single-photon emission computerized tomography and conventional cerebral angiography studies. Transverse lines in the white matter (medullary streaks) were observed in almost all persons. In healthy volunteers, the diameter sizes of the medullary streaks increased significantly with age (p < 0.001). Multiple logistic regression analysis revealed that age-adjusted medullary streak diameters were significantly larger in patients with moyamoya disease (p < 0.001). Diameter sizes also increased significantly with the increased severity of cerebral hypoperfusion (p < 0.001) and a higher angiographically determined stage of the disease (p < 0.001). Diameter sizes decreased significantly after surgery (p < 0.001). Conclusions. The increases in medullary streak diameters observed in patients with moyamoya disease appear to represent vessels dilated due to cerebral hypoperfusion. High-field T2-reversed MR imaging is useful in estimating cerebral circulation in patients with moyamoya disease.


2005 ◽  
Vol 103 (2) ◽  
pp. 347-355 ◽  
Author(s):  
David J. Mikulis ◽  
Gregory Krolczyk ◽  
Hubert Desal ◽  
William Logan ◽  
Gabrielle deVeber ◽  
...  

Object. The ability to map cerebrovascular reactivity (CVR) at the tissue level in patients with moyamoya disease could have considerable impact on patient management, especially in guiding surgical intervention and assessing the effectiveness of surgical revascularization. This paper introduces a new noninvasive magnetic resonance (MR) imaging—based method to map CVR. Preoperative and postoperative results are reported in three cases to demonstrate the efficacy of this technique in assessing vascular reserve at the microvascular level. Methods. Three patients with angiographically confirmed moyamoya disease were evaluated before and after surgical revascularization. Measurements of CVR were obtained by rapidly manipulating end-tidal PCO2 between hypercapnic and hypocapnic states during MR imaging. The CVR maps were then calculated by comparing the percentage of changes in MR signal with changes in end-tidal PCO2. Presurgical CVR maps showed distinct regions of positive and negative reactivity that correlated precisely with the vascular territories supplied by severely narrowed vessels. Postsurgical reactivity maps demonstrated improvement in the two patients with positive clinical outcome and no change in the patient in whom a failed superficial temporal artery—middle cerebral artery bypass was performed. Conclusions. Magnetic imaging—based CVR mapping during rapid manipulation of end-tidal PCO2 is an exciting new method for determining the location and extent of abnormal vascular reactivity secondary to proximal large-vessel stenoses in moyamoya disease. Although the study group is small, there seems to be considerable potential for guiding preoperative decisions and monitoring efficacy of surgical revascularization.


2000 ◽  
Vol 92 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Patrick C. A. J. Vroomen ◽  
Marc C. T. F. M. de Krom ◽  
Jan T. Wilmink

Object. Anatomical details of nerve root compression may explain the production of the signs and symptoms of sciatica. The authors of anatomical studies have offered many theories without clearly demonstrating the clinical relevance of the observations. Clinicoanatomical series are scarce and are affected to a great extent by selection bias. Methods. We created a schematic drawing of the lumbar anatomy based on both the literature and in vitro anatomical observations. A diagnosis was then made with the aid of detailed and standardized clinical and magnetic resonance (MR) imaging studies in primary-care patients who presented with pain that radiated into the leg. Clinical and MR imaging findings were correlated. Finally, the anatomical drawing was compared with the clinical data. The higher the vertebral level of symptomatic disc herniations, the more likely the compression will be more laterally situated. Classic symptoms of sciatica (typically, dermatomal pain; increase in pain when coughing, sneezing, or straining; and testing positive for pain during straight leg raising) were most likely to occur with compression of the nerve root in the axilla and with mediolateral disc herniations. Conclusions. The L-3, L-4, L-5, and S-1 nerve roots each tend to be compressed at different sites along the rostrocaudal course of the nerve root. Disc herniations become symptomatic at different sites for each disc level. The schematic drawing produced a priori could well be used to explain these findings. Expectations of particular clinical findings can be predicted by specific pathoanatomical findings.


2005 ◽  
Vol 102 (Special_Supplement) ◽  
pp. 158-164 ◽  
Author(s):  
Andreas Mack ◽  
Robert Wolff ◽  
Stefan Scheib ◽  
Marcus Rieker ◽  
Dirk Weltz ◽  
...  

Object. The limiting factor affecting accuracy during gamma knife surgery is image quality. The new generation of magnetic resonance (MR) imaging units with field strength up to 3 teslas promise superior image quality for anatomical resolution and contrast. There are, however, questions about chemical shifts or susceptibility effects, which are the subject of this paper. Methods. The 3-tesla MR imaging unit (Siemens Trio) was analyzed and compared with a 1-tesla unit (Siemens Magnetom Expert) and to a 1.5-tesla unit (Philips Gyroscan). Evaluation of the magnitude of error was performed within transverse slices in two orientations (axial/coronal) by using a cylindrical phantom with an embedded grid. Deviations were determined for 21 targets in a slab phantom with known geometrical positions within the stereotactic frame. Distortions caused by chemical shift and/or susceptibility effects were analyzed in a head phantom. Inhouse software was used for data analyses. The mean deviation was less than 0.3 mm in axial and less than 0.4 mm in coronal orientations. For the known targets the maximum deviation was 1.16 mm. By optimizing these parameters in the protocol these inaccuracies could be reduced to less than 1.1 mm. Due to inhomogeneities a shift in the z direction of up to 1.5 mm was observed for a dataset, which was shown to be compressed by 1.2 mm. Conclusions. The 3-tesla imaging unit showed superior anatomical contrast and resolution in comparison with the established 1-tesla and 1.5-tesla units; however, due to the high field strength the field within the head coil is very sensitive to inhomogeneities and therefore 3-tesla imaging data will have be handled with care.


2005 ◽  
Vol 102 ◽  
pp. 158-164 ◽  
Author(s):  
Andreas Mack ◽  
Robert Wolff ◽  
Stefan Scheib ◽  
Marcus Rieker ◽  
Dirk Weltz ◽  
...  

Object.The limiting factor affecting accuracy during gamma knife surgery is image quality. The new generation of magnetic resonance (MR) imaging units with field strength up to 3 teslas promise superior image quality for anatomical resolution and contrast. There are, however, questions about chemical shifts or susceptibility effects, which are the subject of this paper.Methods.The 3-tesla MR imaging unit (Siemens Trio) was analyzed and compared with a 1-tesla unit (Siemens Magnetom Expert) and to a 1.5-tesla unit (Philips Gyroscan). Evaluation of the magnitude of error was performed within transverse slices in two orientations (axial/coronal) by using a cylindrical phantom with an embedded grid. Deviations were determined for 21 targets in a slab phantom with known geometrical positions within the stereotactic frame. Distortions caused by chemical shift and/or susceptibility effects were analyzed in a head phantom. Inhouse software was used for data analyses.The mean deviation was less than 0.3 mm in axial and less than 0.4 mm in coronal orientations. For the known targets the maximum deviation was 1.16 mm. By optimizing these parameters in the protocol these inaccuracies could be reduced to less than 1.1 mm. Due to inhomogeneities a shift in the z direction of up to 1.5 mm was observed for a dataset, which was shown to be compressed by 1.2 mm.Conclusions.The 3-tesla imaging unit showed superior anatomical contrast and resolution in comparison with the established 1-tesla and 1.5-tesla units; however, due to the high field strength the field within the head coil is very sensitive to inhomogeneities and therefore 3-tesla imaging data will have be handled with care.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


2002 ◽  
Vol 97 (3) ◽  
pp. 591-597 ◽  
Author(s):  
Emmanuel Cuny ◽  
Dominique Guehl ◽  
Pierre Burbaud ◽  
Christian Gross ◽  
Vincent Dousset ◽  
...  

Object. The goal of this study was to determine the most suitable procedure(s) to localize the optimal site for high-frequency stimulation of the subthalamic nucleus (STN) for the treatment of advanced Parkinson disease. Methods. Stereotactic coordinates of the STN were determined in 14 patients by using three different methods: direct identification of the STN on coronal and axial T2-weighted magnetic resonance (MR) images and indirect targeting in which the STN coordinates are referred to the anterior commissure—posterior commissure (AC—PC) line, which, itself, is determined either by using stereotactic ventriculography or reconstruction from three-dimensional (3D) MR images. During the surgical procedure, electrode implantation was guided by single-unit microrecordings on multiple parallel trajectories and by clinical assessment of stimulations. The site where the optimal functional response was obtained was considered to be the best target. Computerized tomography scanning was performed 3 days later and the scans were combined with preoperative 3D MR images to transfer the position of the best target to the same system of stereotactic coordinates. An algorithm was designed to convert individual stereotactic coordinates into an all-purpose PC-referenced system for comparing the respective accuracy of each method of targeting, according to the position of the best target. Conclusions. The target that is directly identified by MR imaging is more remote (mainly in the lateral axis) from the site of the optimal functional response than targets obtained using other procedures, and the variability of this method in the lateral and superoinferior axes is greater. In contrast, the target defined by 3D MR imaging is closest to the target of optimal functional response and the variability of this method is the least great. Thus, 3D reconstruction adjusted to the AC—PC line is the most accurate technique for STN targeting, whereas direct visualization of the STN on MR images is the least effective. Electrophysiological guidance makes it possible to correct the inherent inaccuracy of the imaging and surgical techniques and is not designed to modify the initial targeting.


1988 ◽  
Vol 68 (2) ◽  
pp. 246-250 ◽  
Author(s):  
Gene H. Barnett ◽  
Allan H. Ropper ◽  
Keith A. Johnson

✓ Magnetic resonance (MR) imaging has been largely restricted to patients who are neurologically and hemodynamically stable. The strong magnetic field and radiofrequency transmissions involved in acquiring images are potential sources of interference with monitoring equipment. A method of support and physiological monitoring of critically ill neurosurgical and neurological patients during MR imaging using a 0.6-tesla MR system is reported. This technique has not caused degradation of the MR image due to electrical interference. Adequate preparation and precautions allow many critically ill neurosurgical and neurological patients to safely undergo MR imaging.


2004 ◽  
Vol 1 (3) ◽  
pp. 273-280 ◽  
Author(s):  
L. Fernando Gonzalez ◽  
David Fiorella ◽  
Neil R. Crawford ◽  
Robert C. Wallace ◽  
Iman Feiz-Erfan ◽  
...  

Object. The authors sought to establish radiological criteria for the diagnosis of C1–2 vertical distraction injuries. Methods. Conventional radiography, computerized tomography (CT), and magnetic resonance (MR) imaging findings in five patients with a C1–2 vertical distraction injury were correlated with their clinical history, operative findings, and autopsy findings. The basion—dens interval (BDI) and the C-1 and C-2 lateral mass interval (LMI) were measured in 93 control patients who underwent CT angiography; these measurements were used to define the normal BDI and LMI. The MR imaging results obtained in 30 healthy individuals were used to characterize the normal signal intensity of the C1–2 joint. The MR imaging results were compared with MR images obtained in five patients with distraction injuries. In the 93 patients, the BDI averaged 4.7 mm (standard deviation [SD] 1.7 mm, range 0.6–9 mm) and the LMI averaged 1.7 mm (SD 0.48 mm, range 0.7–3.3 mm). Based on CT scanning in the five patients with distraction injuries, the BDIs (mean 11.9 mm, SD 3.2 mm; p < 0.001) and LMIs (mean 5.5 mm, SD 2 mm; p < 0.0001) were significantly greater than in the control group. Fast—spin echo inversion-recovery MR images obtained in these five patients revealed markedly increased signal distributed throughout the C1–2 lateral mass articulations bilaterally. Conclusions. In 95% of healthy individuals, the LMI ranged between 0.7 and 2.6 mm. An LMI greater than 2.6 mm indicates the possibility of a distraction injury, which can be confirmed using MR imaging. Patients with a suspected C1–2 distraction injury may be candidates for surgical fusion of C1–2.


Sign in / Sign up

Export Citation Format

Share Document