Magnetic resonance imaging—based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation

2005 ◽  
Vol 103 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Noam Alperin ◽  
Anusha Sivaramakrishnan ◽  
Terry Lichtor
2003 ◽  
Vol 14 (4) ◽  
pp. 1-8 ◽  
Author(s):  
Patricia B. Raksin ◽  
Noam Alperin ◽  
Anusha Sivaramakrishnan ◽  
Sushma Surapaneni ◽  
Terry Lichtor

Current techniques for intracranial pressure (ICP) measurement are invasive. All require a surgical procedure for placement of a pressure probe in the central nervous system and, as such, are associated with risk and morbidity. These considerations have driven investigators to develop noninvasive techniques for pressure estimation. A recently developed magnetic resonance (MR) imaging–based method to measure intracranial compliance and pressure is described. In this method the small changes in intracranial volume and ICP that occur naturally with each cardiac cycle are considered. The pressure change during the cardiac cycle is derived from the cerebrospinal fluid (CSF) pressure gradient waveform calculated from the CSF velocities. The intracranial volume change is determined by the instantaneous differences between arterial blood inflow, venous blood outflow, and CSF volumetric flow rates into and out of the cranial vault. Elastance (the inverse of compliance) is derived from the ratio of the measured pressure and volume changes. A mean ICP value is then derived based on a linear relationship that exists between intracranial elastance and ICP. The method has been validated in baboons, flow phantoms, and computer simulations. To date studies in humans demonstrate good measurement reproducibility and reliability. Several other noninvasive approaches for ICP measurement, mostly nonimaging based, are also reviewed. Magnetic resonance imaging–based ICP measurement may prove valuable in the diagnosis and serial evaluation of patients with a variety of disorders associated with alterations in ICP.


2007 ◽  
Vol 27 (9) ◽  
pp. 1563-1572 ◽  
Author(s):  
Souraya Stoquart-ElSankari ◽  
Olivier Balédent ◽  
Catherine Gondry-Jouet ◽  
Malek Makki ◽  
Olivier Godefroy ◽  
...  

Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive reliable technique, which enables quantification of cerebrospinal fluid (CSF) and total cerebral blood flows (tCBF). Although it is used to study hydrodynamic cerebral disorders in the elderly group (hydrocephalus), there is no published evaluation of aging effects on both tCBF and CSF flows, and on their mechanical coupling. Nineteen young (mean age 27 ± 4 years) and 12 elderly (71 ± 9 years) healthy volunteers underwent cerebral MRI using 1.5 T scanner. Phase-contrast magnetic resonance imaging pulse sequence was performed at the aqueductal and cervical levels. Cerebrospinal fluid and blood flow curves were then calculated over the cardiac cycle, to extract the characteristic parameters: mean and peak flows, their latencies, and stroke volumes for CSF (cervical and aqueductal) and vascular flows. Total cerebral blood flow was ( P < 0.01) decreased significantly in the elderly group when compared with the young subjects with a linear correlation with age observed only in the elderly group ( R2 = 0.7; P = 0.05). Arteriovenous delay was preserved with aging. The CSF stroke volumes were significantly reduced in the elderly, at both aqueductal ( P < 0.01) and cervical ( P < 0.05) levels, whereas aqueduct/cervical proportion ( P = 0.9) was preserved. This is the first work to study aging effects on both CSF and vascular cerebral flows. Data showed (1) tCBF decrease, (2) proportional aqueductal and cervical CSF pulsations reduction as a result of arterial loss of pulsatility, and (3) preserved intracerebral compliance with aging. These results should be used as reference values, to help understand the pathophysiology of degenerative dementia and cerebral hydrodynamic disorders as hydrocephalus.


Neurosurgery ◽  
2015 ◽  
Vol 77 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Noam Alperin ◽  
James R. Loftus ◽  
Carlos J. Oliu ◽  
Ahmet M. Bagci ◽  
Sang H. Lee ◽  
...  

Abstract BACKGROUND: Suboccipital cough-induced headaches are considered a hallmark symptom of Chiari malformation type I (CMI). However, non--Valsalva-related suboccipital headaches and headaches in other locations are also common in CMI. The diagnostic significance and the underlying factors associated with these different headaches types are not well understood. OBJECTIVE: To compare cranial morphology and hydrodynamics in 3 types of headaches in CMI to better understand the pathophysiological basis for the different headache characteristics. METHODS: Twenty-two cranial physiological and morphological measures were obtained with specialized magnetic resonance imaging scans from 63 symptomatic pretreated CMI patients, 40 with suboccipital headaches induced by Valsalva maneuvers (34 women; age, 36 ± 10 years), 15 with non--Valsalva-related suboccipital headaches (10 women; age, 33 ± 9 years), 8 with nonsuboccipital non--Valsalva-induced headaches (8 women; age, 39 ± 13 years), and 37 control subjects (24 women; age, 36 ± 12 years). Group differences were identified with the use of the 2-tailed Student t test. RESULTS: Posterior cranial fossa markers of CMI were similar among the 3 headache subtypes. However, the Valsalva-related suboccipital headaches cohort demonstrated a significantly lower intracranial compliance index than the non--Valsalva-related suboccipital headaches cohort (7.5 ± 3.4 vs 10.9 ± 4.9), lower intracranial volume change during the cardiac cycle (0.48 ± 0.19 vs 0.61 ± 0.16 mL), and higher magnetic resonance imaging--derived intracranial pressure (11.1 ± 4.3 vs 7.7 ± 2.8 mm Hg; P = .02). The Valsalva-related suboccipital headaches cohort had smaller intracranial and lateral ventricular volumes compared with the healthy cohort. The non--Valsalva-related suboccipital headaches cohort had reduced venous drainage through the jugular veins. CONCLUSION: Valsalva-induced worsening of occipital headaches appears to be related to a small intracranial volume rather than the smaller posterior cranial fossa. This explains the reduced intracranial compliance and corresponding higher pressure measured in CMI patients with headaches affected by Valsalva maneuvers.


Neurosurgery ◽  
2004 ◽  
Vol 55 (6) ◽  
pp. 1344-1351 ◽  
Author(s):  
Anusha Sivaramakrishnan ◽  
Noam Alperin ◽  
Sushma Surapaneni ◽  
Terry Lichtor

Abstract OBJECTIVE: To quantify the effect of decompression surgery on craniocervical junction hydrodynamics and on global intracranial compliance (ICC) in patients with Chiari I malformation by use of magnetic resonance measurements of cerebrospinal fluid and blood flow. Studying the effect of decompression surgery may improve our understanding of the pathophysiological characteristics of Chiari I malformation and aid in identifying patients who will benefit from the procedure. METHODS: Twelve patients were studied with a 1.5-T magnetic resonance imaging scanner before and after decompression surgery. Cine phase contrast magnetic resonance images were used to quantify maximum cord displacement, maximum systolic cerebrospinal fluid velocity and volumetric flow rate, and overall ICC. ICC was derived by use of a previously reported method that measures small changes in intracranial volume and pressure that occur naturally with each cardiac cycle. RESULTS: After surgery, changes were documented both in the local hydrodynamic parameters and in ICC. However, only the change in ICC, an average increase of more than 60%, was statistically significant. Increased ICC, which was associated with improved outcome, was measured in 10 of the 12 patients, no significant change was documented in 1 patient, and decreased ICC was measured in 1 patient whose symptoms persisted after surgery. CONCLUSION: An increase in the overall compliance of the intracranial compartment is the most significant and consistent change measured after decompression surgery. Changes in cord displacement, cerebrospinal fluid velocities, and flow in the craniospinal junction were less consistent and less affected by the operation. Thus, ICC may play an important role in the outcome of decompression surgery related to improving symptoms and restoring normal neurological hydrodynamics in patients with Chiari I malformations.


Neurosurgery ◽  
1991 ◽  
Vol 28 (6) ◽  
pp. 883-885 ◽  
Author(s):  
Teiji Tominaga ◽  
Keiji Koshu ◽  
Akira Ogawa ◽  
Takashi Yoshimoto

Abstract Cine-mode magnetic resonance imaging provides simultaneous images of cerebrospinal fluid flow dynamics. A patient with a basilar impression accompanied by a Chiari malformation and von Recklinghausen's disease who underwent transoral decompression is reported. Preoperative cine-mode magnetic resonance imaging visualized an associated obstruction of cerebrospinal fluid pulsatile flow at the level of the foramen magnum. Tonsilar herniation (Chiari I malformation) and hydrocephalus were also present. Postoperatively, the obstruction of cerebrospinal fluid flow was resolved concomitant with the correction of the cervicomedullary angulation. On the basis of observations made by magnetic resonance imaging, the surgical treatment of basilar impression accompanied by Chiari malformation is briefly discussed.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Per Kristian Eide ◽  
Are H Pripp ◽  
Geir Ringstad

Abstract Disturbed clearance of toxic metabolites from the brain via cerebrospinal fluid is emerging as an important mechanism behind dementia and neurodegeneration. To this end, magnetic resonance imaging work-up of dementia diseases is largely focused on anatomical derangements of the brain. This study explores magnetic resonance imaging biomarkers of cerebrospinal fluid tracer dynamics in patients with the dementia subtype idiopathic normal pressure hydrocephalus and a cohort of reference subjects. All study participants underwent multi-phase magnetic resonance imaging up to 48 h after intrathecal administration of the contrast agent gadobutrol (0.5 ml, 1 mmol/ml), serving as cerebrospinal fluid tracer. Imaging biomarkers of cerebrospinal fluid tracer dynamics (i.e. ventricular reflux grades 0–4 and clearance) were compared with anatomical magnetic resonance imaging biomarkers of cerebrospinal fluid space anatomy (Evans’ index, callosal angle and disproportional enlargement of subarachnoid spaces hydrocephalus) and neurodegeneration (Schelten’s medial temporal atrophy scores, Fazeka’s scores and entorhinal cortex thickness). The imaging scores were also related to a pulsatile intracranial pressure score indicative of intracranial compliance. In shunt-responsive idiopathic normal pressure hydrocephalus, the imaging biomarkers demonstrated significantly altered cerebrospinal fluid tracer dynamics (ventricular reflux grades 3–4 and reduced clearance of tracer), deranged cerebrospinal fluid space anatomy and pronounced neurodegeneration. The altered MRI biomarkers were accompanied by pressure indices of impaired intracranial compliance. In conclusion, we present novel magnetic resonance imaging biomarkers characterizing idiopathic normal pressure hydrocephalus pathophysiology, namely measures of cerebrospinal fluid molecular redistribution and clearance, which add information to traditional imaging scores of cerebrospinal fluid space anatomy and neurodegeneration.


1998 ◽  
Vol 41 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Sean C. Huckins ◽  
Christopher W. Turner ◽  
Karen A. Doherty ◽  
Michael M. Fonte ◽  
Nikolaus M. Szeverenyi

Functional Magnetic Resonance Imaging (fMRI) holds exciting potential as a research and clinical tool for exploring the human auditory system. This noninvasive technique allows the measurement of discrete changes in cerebral cortical blood flow in response to sensory stimuli, allowing determination of precise neuroanatomical locations of the underlying brain parenchymal activity. Application of fMRI in auditory research, however, has been limited. One problem is that fMRI utilizing echo-planar imaging technology (EPI) generates intense noise that could potentially affect the results of auditory experiments. Also, issues relating to the reliability of fMRI for listeners with normal hearing need to be resolved before this technique can be used to study listeners with hearing loss. This preliminary study examines the feasibility of using fMRI in auditory research by performing a simple set of experiments to test the reliability of scanning parameters that use a high resolution and high signal-to-noise ratio unlike that presently reported in the literature. We used consonant-vowel (CV) speech stimuli to investigate whether or not we could observe reproducible and consistent changes in cortical blood flow in listeners during a single scanning session, across more than one scanning session, and in more than one listener. In addition, we wanted to determine if there were differences between CV speech and nonspeech complex stimuli across listeners. Our study shows reproducibility within and across listeners for CV speech stimuli. Results were reproducible for CV speech stimuli within fMRI scanning sessions for 5 out of 9 listeners and were reproducible for 6 out of 8 listeners across fMRI scanning sessions. Results of nonspeech complex stimuli across listeners showed activity in 4 out of 9 individuals tested.


Author(s):  
A.I. Zamiatina, M.V. Medvedev

A case of prenatal diagnosis of the corpus callosum lipoma at 32–33 weeks of gestation is presented. In a consultative examination, a hyperechoic formation with clear contours was found in the projection of the septum pellucidum, occupying the rostrum, genu, and truncus of corpus callosum, without signs of intratumorally blood flow in the color Doppler mapping mode. The prenatal diagnosis of "callosum lipoma" was established, confirmed after the birth of a child during magnetic resonance imaging.


Sign in / Sign up

Export Citation Format

Share Document