scholarly journals Gleysols on sandy deposits of the Litorina Sea underlain by Histosol formations of Ancylus Lake age in western Estonia

2008 ◽  
Vol 57 (4) ◽  
pp. 231 ◽  
Author(s):  
L Reintam ◽  
T Moora ◽  
A Raukas
Keyword(s):  
Author(s):  
Ilppo Vuorinen

Post-glacial aquatic ecosystems in Eurasia and North America, such as the Baltic Sea, evolved in the freshwater, brackish, and marine environments that fringed the melting glaciers. Warming of the climate initiated sea level and land rise and subsequent changes in aquatic ecosystems. Seminal ideas on ancient developing ecosystems were based on findings in Swedish large lakes of species that had arrived there from adjacent glacial freshwater or marine environments and established populations which have survived up to the present day. An ecosystem of the first freshwater stage, the Baltic Ice Lake initially consisted of ice-associated biota. Subsequent aquatic environments, the Yoldia Sea, the Ancylus Lake, the Litorina Sea, and the Mya Sea, are all named after mollusc trace fossils. These often convey information on the geologic period in question and indicate some physical and chemical characteristics of their environment. The ecosystems of various Baltic Sea stages are regulated primarily by temperature and freshwater runoff (which affects directly and indirectly both salinity and nutrient concentrations). Key ecological environmental factors, such as temperature, salinity, and nutrient levels, not only change seasonally but are also subject to long-term changes (due to astronomical factors) and shorter disturbances, for example, a warm period that essentially formed the Yoldia Sea, and more recently the “Little Ice Age” (which terminated the Viking settlement in Iceland).There is no direct way to study the post-Holocene Baltic Sea stages, but findings in geological samples of ecological keystone species (which may form a physical environment for other species to dwell in and/or largely determine the function of an ecosystem) can indicate ancient large-scale ecosystem features and changes. Such changes have included, for example, development of an initially turbid glacial meltwater to clearer water with increasing primary production (enhanced also by warmer temperatures), eventually leading to self-shading and other consequences of anthropogenic eutrophication (nutrient-rich conditions). Furthermore, the development in the last century from oligotrophic (nutrient-poor) to eutrophic conditions also included shifts between the grazing chain (which include large predators, e.g., piscivorous fish, mammals, and birds at the top of the food chain) and the microbial loop (filtering top predators such as jellyfish). Another large-scale change has been a succession from low (freshwater glacier lake) biodiversity to increased (brackish and marine) biodiversity. The present-day Baltic Sea ecosystem is a direct descendant of the more marine Litorina Sea, which marks the beginning of the transition from a primeval ecosystem to one regulated by humans. The recent Baltic Sea is characterized by high concentrations of pollutants and nutrients, a shift from perennial to annual macrophytes (and more rapid nutrient cycling), and an increasing rate of invasion by non-native species. Thus, an increasing pace of anthropogenic ecological change has been a prominent trend in the Baltic Sea ecosystem since the Ancylus Lake.Future development is in the first place dependent on regional factors, such as salinity, which is regulated by sea and land level changes and the climate, and runoff, which controls both salinity and the leaching of nutrients to the sea. However, uncertainties abound, for example the future development of the Gulf Stream and its associated westerly winds, which support the sub-boreal ecosystems, both terrestrial and aquatic, in the Baltic Sea area. Thus, extensive sophisticated, cross-disciplinary modeling is needed to foresee whether the Baltic Sea will develop toward a freshwater or marine ecosystem, set in a sub-boreal, boreal, or arctic climate.


Boreas ◽  
2008 ◽  
Vol 28 (4) ◽  
pp. 437-453 ◽  
Author(s):  
JφRN BO JENSEN ◽  
OLE BENNIKE ◽  
ANDRZEJ WITKOWSKI ◽  
WOLFRAM LEMKE ◽  
ANTOON KUIJPERS

The Holocene ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 37-52 ◽  
Author(s):  
Triine Nirgi ◽  
Alar Rosentau ◽  
Hando-Laur Habicht ◽  
Tiit Hang ◽  
Tõnno Jonuks ◽  
...  

The shore displacement and palaeogeography of the Pärnu Bay area, eastern Baltic Sea, during the Stone Age, were reconstructed using sedimentological and archaeological proxies and GIS-based landscape modelling. We discovered and studied buried palaeochannel sediments on the coastal lowland and in the shallow offshore of the Pärnu Bay and interpreted these data together with previously published shore displacement evidence. The reconstructed relative shore-level (RSL) curve is based on 78 radiocarbon dates from sediment sequences and archaeological sites in the Pärnu Bay area and reported here using the HOLSEA sea-level database format. The new RSL curve displays regressive water levels at −5.5 and −4 m a.s.l. before the Ancylus Lake and Litorina Sea transgressions, respectively. According to the curve, the total water-level rise during the Ancylus Lake transgression (10.7–10.2 cal. ka BP) was around 18 m, with the average rate of rise about 35 mm per annum, while during the Litorina Sea transgression (8.5–7.3 cal. ka BP), the water level rose around 14 m, with average rate of 12 mm per annum. During the short period around 7.8–7.6 cal. ka BP, the RSL rose in Pärnu, but probably also in Samsø (Denmark), Blekinge (Sweden) and Narva-Luga (NE Estonia–NW Russia), faster than the concurrent eustatic sea level calculated from the far-field sites. The palaeogeographic reconstructions show the settlement patterns of the coastal landscape since the Mesolithic and provide new perspective for looking Mesolithic hunter-fisher-gatherer settlement sites on the banks of the submerged ca. 9000 years old river channel in the bottom of the present-day Pärnu Bay.


Author(s):  
Robert Kostecki

AbstractFour sediment cores from the southern part of the Arkona Basin were analyzed in terms of their geochemical composition, age and stratigraphy. The main stages of the Baltic Sea: the Baltic Ice Lake, the Ancylus Lake and the Littorina Sea were identified in all the analyzed cores. The data confirmed the high water fluctuation and significant environmental changes during the Baltic Sea evolution in the Late-Glacial and the Holocene. The signs of the second regression of the Baltic Ice Lake, dated at around 11 000 cal BP, were identified at a depth of 24 m b.s.l. Regression of the Ancylus Lake, dated at 9300 cal BP, was identified at a depth of 23 m b.s.l. The most pronounced period was the transition stage between the Ancylus Lake and the Littorina Sea. The record of the Littorina Sea onset in the sediments of the Arkona Basin is marked as a sudden increase in loss on ignition, biogenic silica, magnesium, calcium, iron and strontium. The age of the Littorina Sea in the Arkona Basin was estimated as younger than 8200 cal BP.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dalton S. Hardisty ◽  
Natascha Riedinger ◽  
Noah J. Planavsky ◽  
Dan Asael ◽  
Steven M. Bates ◽  
...  

Low oxygen conditions in the modern Baltic Sea are exacerbated by human activities; however, anoxic conditions also prevailed naturally over the Holocene. Few studies have characterized the specific paleoredox conditions (manganous, ferruginous, euxinic) and their frequency in southern Baltic sub-basins during these ancient events. Here, we apply a suite of isotope systems (Fe, Mo, S) and associated elemental proxies (e.g., Fe speciation, Mn) to specifically define water column redox regimes through the Baltic Holocene in a sill-proximal to sill-distal transect (Lille Belt, Bornholm Basin, Landsort Deep) using samples collected during the Integrated Ocean Drilling Program Expedition 347. At the sill-proximal Lille Belt, there is evidence for anoxic manganous/ferruginous conditions for most of the cored interval following the transition from the Ancylus Lake to Littorina Sea but with no clear excursion to more reducing or euxinic conditions associated with the Holocene Thermal Maximum (HTM) or Medieval Climate Anomaly (MCA) events. At the sill-distal southern sub-basin, Bornholm Basin, a combination of Fe speciation, pore water Fe, and solid phase Mo concentration and isotope data point to manganous/ferruginous conditions during the Ancylus Lake-to-Littorina Sea transition and HTM but with only brief excursions to intermittently or weakly euxinic conditions during this interval. At the western Baltic Proper sub-basin, Landsort Deep, new Fe and S isotope data bolster previous Mo isotope records and Fe speciation evidence for two distinct anoxic periods but also suggest that sulfide accumulation beyond transient levels was largely restricted to the sediment-water interface. Ultimately, the combined data from all three locations indicate that Fe enrichments typically indicative of euxinia may be best explained by Fe deposition as oxides following events likely analogous to the periodic incursions of oxygenated North Sea waters observed today, with subsequent pyrite formation in sulfidic pore waters. Additionally, the Mo isotope data from multiple Baltic Sea southern basins argue against restricted and widespread euxinic conditions, as has been demonstrated in the Baltic Proper and Bothnian Sea during the HTM or MCA. Instead, similar to today, each past Baltic anoxic event is characterized by redox conditions that become progressively more reducing with increasing distance from the sill.


2015 ◽  
Vol 32 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Krystyna Szeroczyńska ◽  
Edyta Zawisza

Abstract Cenote lakes are natural sinkholes or depressions resulting from the collapse of limestone bedrock exposing the groundwater underneath. Thousands of such lakes are particularly encountered on the Yucatan Peninsula (Mexico). These lakes were of great significance for the Maya culture as important religious places and primary source of drink­ing water. They permitted the survival of Mayan communities through dry periods known as “Maya drought”. Most of the cenote lakes are large open water pools measuring tens of meters in diameter. The majority of cenotes are smaller sheliered sites. Their waiers are usually very clear and oligotrophic, originating from rain waier filtering slowly through the ground. The auihors visited and coliected zooplankion samples from eight cenotes in November 2013, namely: Ik-Kil, Samula, Zaci, X-Kekn, Actum Ha, Cristal, Sian Ka’an, and Chan Chemuxil (transect Merida-Tulum- Cancun). The analysed lakes differ considerably in morphological terms, varying from very deep to shallow. Some of them are under human impact (tourists). The water samples were anaiysed for zooplankton content, but the phyto­plankton frequently occurring was also taken into account. The obtained results are largely varied, indicated big eco­logical verity among cenotes which depended on lake age, localization and morphometry. As showed our study Cladocera zooplankion was very rare and only present at several sites. Beiween the fauna community Copepoda and Ostracoda species were the most abundant. Phytoplankton were present in all studied lakes and it sees that played the central role in those ecosystems.


Sign in / Sign up

Export Citation Format

Share Document