Defects of contact activation system (CAS) and kallikrein/kinin system (KKS)

Reactome ◽  
2020 ◽  
Author(s):  
Bin Zhang
2020 ◽  
Vol 11 ◽  
Author(s):  
Pascal Urwyler ◽  
Stephan Moser ◽  
Panteleimon Charitos ◽  
Ingmar A. F. M. Heijnen ◽  
Melanie Rudin ◽  
...  

2017 ◽  
Vol 43 (08) ◽  
pp. 814-826 ◽  
Author(s):  
Clément Naudin ◽  
Elena Burillo ◽  
Stefan Blankenberg ◽  
Lynn Butler ◽  
Thomas Renné

AbstractContact activation is the surface-induced conversion of factor XII (FXII) zymogen to the serine protease FXIIa. Blood-circulating FXII binds to negatively charged surfaces and this contact to surfaces triggers a conformational change in the zymogen inducing autoactivation. Several surfaces that have the capacity for initiating FXII contact activation have been identified, including misfolded protein aggregates, collagen, nucleic acids, and platelet and microbial polyphosphate. Activated FXII initiates the proinflammatory kallikrein-kinin system and the intrinsic coagulation pathway, leading to formation of bradykinin and thrombin, respectively. FXII contact activation is well characterized in vitro and provides the mechanistic basis for the diagnostic clotting assay, activated partial thromboplastin time. However, only in the past decade has the critical role of FXII contact activation in pathological thrombosis been appreciated. While defective FXII contact activation provides thromboprotection, excess activation underlies the swelling disorder hereditary angioedema type III. This review provides an overview of the molecular basis of FXII contact activation and FXII contact activation–associated disease states.


1999 ◽  
Vol 82 (08) ◽  
pp. 226-233 ◽  
Author(s):  
Rasmus Røjkjær ◽  
Zia Shariat-Madar ◽  
Alvin Schmaier

IntroductionFor the last 25 years, most investigators in the field of plasma kallikrein/kinin have accepted the contact activation hypothesis by factor XII initiates plasma kallikrein/kinin system activation by binding to a physiologic, negatively-charged surface. This hypothesis forms the basis of the common surface-based coagulation assays, such as the activated partial thromboplastin time (aPTT). Also, it may be the mechanism by which the plasma kallikrein/kinin system becomes activated in vivo when exposed to artificial surfaces, such as those used in medical interventions, and following infection.A physiologic, negatively-charged surface, however, capable of initiating the activation of this system has never been convincingly described. This fact questions the role of this system in vivo. Sulfatides, phospholipids, cholesterol sulfate, chondroitin sulfate, heparins, and other glycosaminoglycans have been proposed as physiologic negatively charged surfaces. The autoactivation of factor XII, which can take several hours depending on the surface, leads to prekallikrein (PK) activation. Kallikrein formation reciprocally activates more factor XII in a reaction that is at least 1,000-fold faster than autoactivation. In addition to the surface, the rate of initiation and amplification of this system is accelerated by high molecular weight kininogen (HK). Activation of the zymogens factor XII and PK result in enzymes that have been proposed to contribute to factor XI activation (coagulation), complement activation, bradykinin (BK) liberation, fibrinolysis, and granulocyte activation in vitro.It is well known, however, that clinical deficiencies in factor XII, PK, and HK are not associated with bleeding, even though these deficiencies markedly prolong surfaced-activated coagulation assays for hemostasis. This information indicates that this system contributes little, if anything, to hemostasis. Recently, this field has been thoroughly reviewed.1,2 The purpose of this report is to present a new hypothesis for assembly and activation of this system on viable cell membranes and to begin to clarify these proteins’ roles in vivo.Over 10 years ago, our laboratory developed a working hypothesis to serve as an alternative to the factor XII autoactivation mechanism for the initiation of activation of the proteins of the plasma kallikrein/kinin system. We reasoned that, in vivo, it is the assembly of a multiprotein complex of these proteins on cell receptors that allows for localization and activation of this system. To prove that hypothesis, we sought to accomplish the following three things. First, we attempted to determine whether there is a receptor(s) for the proteins of this system on cell membranes. Second, we sought to show whether the assembly of the proteins of the plasma kallikrein/kinin system on cell membranes results in activation of PK and factor XII. Finally, we attempted to demonstrate biological activities associated with the activation of these proteins on cell membranes. The following report details this work and characterizes a new hypothesis for the assembly and activation of the proteins of the plasma kallikrein/kinin system.


2021 ◽  
Vol 118 (3) ◽  
pp. e2014810118
Author(s):  
Katherine J. Kearney ◽  
Juliet Butler ◽  
Olga M. Posada ◽  
Clare Wilson ◽  
Samantha Heal ◽  
...  

Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.


Pneumologie ◽  
2016 ◽  
Vol 70 (S 01) ◽  
Author(s):  
J Knauth ◽  
A Schweinberger ◽  
H Kuhn ◽  
H Wirtz

2021 ◽  
Vol 14 (3) ◽  
pp. 240
Author(s):  
Jean-Pierre Girolami ◽  
Nadine Bouby ◽  
Christine Richer-Giudicelli ◽  
Francois Alhenc-Gelas

This review addresses the physiological role of the kallikrein–kinin system in arteries, heart and kidney and the consequences of kallikrein and kinin actions in diseases affecting these organs, especially ischemic and diabetic diseases. Emphasis is put on pharmacological and genetic studies targeting kallikrein; ACE/kininase II; and the two kinin receptors, B1 (B1R) and B2 (B2R), distinguished through the work of Domenico Regoli and his collaborators. Potential therapeutic interest and limitations of the pharmacological manipulation of B1R or B2R activity in cardiovascular and renal diseases are discussed. This discussion addresses either the activation or inhibition of these receptors, based on recent clinical and experimental studies.


Sign in / Sign up

Export Citation Format

Share Document