trap formation
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 133)

H-INDEX

46
(FIVE YEARS 10)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yongchan Lee ◽  
Bridgette Reilly ◽  
Chuyi Tan ◽  
Ping Wang ◽  
Monowar Aziz

Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern promoting inflammation and tissue injury. During bacterial or viral infection, macrophages release DNA decorated with nuclear and cytoplasmic proteins known as macrophage extracellular traps (METs). Gasdermin D (GSDMD) is a pore-forming protein that has been involved in extracellular trap formation in neutrophils. We hypothesized that eCIRP induces MET formation by activating GSDMD. Human monocytic cell line THP-1 cells were differentiated with phorbol 12-myristate 13-acetate (PMA) and treated with recombinant murine (rm) CIRP. The MET formation was detected by three methods: time-lapse fluorescence microscopy (video imaging), colorimetry, and ELISA. Cleaved forms of GSDMD, and caspase-1 were detected by Western blotting. Treatment of THP-1 cells with rmCIRP increased MET formation as revealed by SYTOX Orange Staining assay in a time- and dose-dependent manner. METs formed by rmCIRP stimulation were further confirmed by extracellular DNA, citrullinated histone H3, and myeloperoxidase. Treatment of THP-1 cells with rmCIRP significantly increased the cleaved forms of caspase-1 and GSDMD compared to PBS-treated cells. Treatment of macrophages with caspase-1, and GSDMD inhibitors z-VAD-fmk, and disulfiram, separately, significantly decreased rmCIRP-induced MET formation. We also confirmed rmCIRP-induced MET formation using primary cells murine peritoneal macrophages. These data clearly show that eCIRP serves as a novel inducer of MET formation through the activation of GSDMD and caspase-1.


iScience ◽  
2021 ◽  
pp. 103256
Author(s):  
Valentina Poli ◽  
Victor Pui-Yan Ma ◽  
Marco Di Gioia ◽  
Achille Broggi ◽  
Mehdi Benamar ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xi Yu ◽  
Xiaodi Hu ◽  
Maria Pop ◽  
Nicole Wernet ◽  
Frank Kirschhöfer ◽  
...  

AbstractSalicylic acid is a phenolic phytohormone which controls plant growth and development. A methyl ester (MSA) derivative thereof is volatile and involved in plant-insect or plant-plant communication. Here we show that the nematode-trapping fungus Duddingtonia flagrans uses a methyl-salicylic acid isomer, 6-MSA as morphogen for spatiotemporal control of trap formation and as chemoattractant to lure Caenorhabditis elegans into fungal colonies. 6-MSA is the product of a polyketide synthase and an intermediate in the biosynthesis of arthrosporols. The polyketide synthase (ArtA), produces 6-MSA in hyphal tips, and is uncoupled from other enzymes required for the conversion of 6-MSA to arthrosporols, which are produced in older hyphae. 6-MSA and arthrosporols both block trap formation. The presence of nematodes inhibits 6-MSA and arthrosporol biosyntheses and thereby enables trap formation. 6-MSA and arthrosporols are thus morphogens with some functions similar to quorum-sensing molecules. We show that 6-MSA is important in interkingdom communication between fungi and nematodes.


2021 ◽  
pp. 1-13
Author(s):  
Aline Andrea da Cunha ◽  
Josiane Silva Silveira ◽  
Géssica Luana Antunes ◽  
Keila Abreu da Silveira ◽  
Rodrigo Benedetti Gassen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document