scholarly journals Static analysis of four-parameter functionally graded plates with general boundary conditions

Author(s):  
Hoang Thu Phuong ◽  
Tran Huu Quoc ◽  
Ho Thi Hien

In this study, the Ritz variational method is used to analyze and solve the bending problem of rectangular functionally graded material plate with general boundary conditions and subject to some types of load distribution over the entire plate domain. Based on the Kirchoff plate theory, the equilibrium equations are obtained by minimizing the total potential energy. The material properties are assumed to be graded through the thickness of the plates according to a power law with four parameters. The accuracy of the solution has been checked and validated through different comparisons to that available literature. A wide variety of examples have been carried out to reveal the influences of different geometrical parameters, FGM power law index, type of load distribution and boundary conditions on the bending responses of the plates. The results show that the gradients in material properties play an important role in determining the response of the FGM plates.Keywords: FGM; Kirchhoff plate; Ritz method; boundary conditions.

2017 ◽  
Vol 34 (5) ◽  
pp. 1598-1641 ◽  
Author(s):  
Qingshan Wang ◽  
Dongyan Shi ◽  
Qian Liang ◽  
Fuzhen Pang

Purpose The purpose of this work is to apply the Fourier–Ritz method to study the vibration behavior of the moderately thick functionally graded (FG) parabolic and circular panels and shells of revolution with general boundary conditions. Design/methodology/approach The modified Fourier series is chosen as the basis function of the admissible functions of the structure to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges, and the vibration behavior is solved by means of the Ritz method. The complete shells of revolution can be achieved by using the coupling spring technique to imitate the kinematic compatibility and physical compatibility conditions of FG parabolic and circular panels at the common meridian of θ = 0 and 2π. The convergence and accuracy of the present method are verified by other contributors. Findings Some new results of FG panels and shells with elastic restraints, as well as different geometric and material parameters, are presented and the effects of the elastic restraint parameters, power-law exponent, circumference angle and power-law distributions on the free vibration characteristic of the panels are also presented, which can be served as benchmark data for the designers and engineers to avoid the unpleasant, inefficient and structurally damaging resonant. Originality/value The paper could provide the reference for the research about the moderately thick FG parabolic and circular panels and shells of revolution with general boundary conditions. In addition, the change of the boundary conditions can be easily achieved by just varying the stiffness of the boundary restraining springs along all the edges of panels without making any changes in the solution procedure.


2018 ◽  
Vol 38 (1) ◽  
pp. 110-121
Author(s):  
Zhuang Lin ◽  
Shuangxia Shi

This paper presents a three-dimensional formulation for the free vibrations of thick rectangular plates with general boundary conditions and resting on elastic foundations. The general boundary conditions are imposed by means of penalty function method. The displacements of the plates are expressed by a three-dimensional cosine series and some simple polynomial functions which introduced to ensure and accelerate the convergence of the series representation. All the unknown coefficients can be obtained by using the Rayleigh–Ritz method. Comparisons of the present results with those in available literature demonstrate the accuracy and reliability of the present formulation. Furthermore, parametric investigations are presented including the effects of boundary conditions, geometrical parameters, and elastic foundation.


2017 ◽  
Vol 4 (1) ◽  
pp. 52-84 ◽  
Author(s):  
Hong Zhang ◽  
Dongyan Shi ◽  
Qingshan Wang ◽  
Bin Qin

AbstractThe purpose of this content is to investigate the free vibration of functionally graded parabolic and circular panels with general boundary conditions by using the Fourier-Ritz method. The first-order shear deformation theory is adopted to consider the effects of the transverse shear and rotary inertia of the panel structures. The functionally graded panel structures consist of ceramic and metal which are assumed to vary continuously through the thickness according to the power-law distribution, and two types of power-law distributions are considered for the ceramic volume fraction. The improved Fourier series method is applied to construct the new admissible function of the panels to surmount the weakness of the relevant discontinuities with the original displacement and its derivatives at the boundaries while using the traditional Fourier series method. The boundary spring technique is adopted to simulate the general boundary condition. The unknown coefficients appearing in the admissible function are determined by using the Ritz procedure based on the energy functional of the panels. The numerical results show the present method has good convergence, reliability and accuracy. Some new results for functionally graded parabolic and circular panels with different material distributions and boundary conditions are provided, which may serve as benchmark solutions.


2015 ◽  
Vol 07 (06) ◽  
pp. 1550082 ◽  
Author(s):  
Mohammed Sobhy

This paper deals with thermomechanical bending of functionally graded material (FGM) plates under various boundary conditions and resting on two-layer elastic foundations. One of these layers is Winkler springs with a variable modulus while the other is considered as a shear layer with a constant modulus. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The temperature is obtained by solving the one-dimensional equation of heat conduction. The material properties of the plate are assumed to be graded continuously across the panel thickness. A simple power-law distribution in terms of the volume fractions of the constituents is used for estimating the effective material properties such as temperature-dependent thermoelastic properties. The governing equations are derived based on the sinusoidal shear deformation plate theory including the external load and thermal effects. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, temperature difference, elastic foundation parameters, and side-to-thickness ratio on the bending of FGM plates are presented.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7088
Author(s):  
Wenhao Huang ◽  
Kai Xue ◽  
Qiuhong Li

Functionally graded materials (FGMs) structures are increasingly used in engineering due to their superior mechanical and material properties, and the FGMs plate with cutouts is a common structural form, but research on the vibration characteristics of FGMs plate with cutouts is relatively limited. In this paper, the three-dimensional exact solution for the vibration analysis of FGMs rectangular plate with circular cutouts subjected to general boundary conditions is presented based on the three-dimensional elasticity theory. The displacement field functions are expressed as standard cosine Fourier series plus auxiliary cosine series terms satisfying the boundary conditions in the global coordinate system. The plate with circular cutout is discretized into four curve quadrilateral sub-domains using the p-version method, and then the blending function method is applied to map the closed quadrilateral region to the computational space. The characteristic equation is obtained based on the Lagrangian energy principle and Rayleigh–Ritz method. The efficiency and reliability of proposed method are verified by comparing the present results with those available in the literature and FEM methods. Finally, a parametric study is investigated including the cutout sizes, the cutout positions, and the cutout numbers from the free vibration characteristic analysis and the harmonic analysis. The results can serve as benchmark data for other research on the vibration of FGMs plates with cutouts.


Author(s):  
Yu Fu ◽  
Jianjun Yao ◽  
Zhenshuai Wan ◽  
Gang Zhao

In this investigation, the free vibration analysis of laminated composite rectangular plates with general boundary conditions is performed with a modified Fourier series method. Vibration characteristics of the plates have been obtained via an energy function represented in the general coordinates, in which the displacement and rotation in each direction is described as an improved form of double Fourier cosine series and several closed-form auxiliary functions to eliminate any possible jumps and boundary discontinuities. All the expansion coefficients are then treated as the generalized coordinates and determined by Rayleigh-Ritz method. The convergence and reliability of the current method are verified by comparing with the results in the literature and those of Finite Element Analysis. The effects of boundary conditions and geometric parameters on the frequencies are discussed as well. Finally, numerous new results for laminated composite rectangular plates with different geometric parameters are presented for various boundary conditions, which may serve as benchmark solutions for future research.


Author(s):  
J. Lu ◽  
X. Hua ◽  
C. Chiu ◽  
X. Zhang ◽  
S. Li ◽  
...  

The porous material is an emerging lightweight material, which is able to reduce structural weight and also keeps the superiority of the structure. Therefore, this work is devoted to the investigation of the functionally graded porous (FGP) annular and circular plates with general boundary conditions. The unified modeling method is proposed by combining the first-order shear deformation theory, the virtual spring technology, the multi-segment partition method, and the semi-analysis Rayleigh–Ritz approach. Afterwards, the convergency and correctness of the proposed method are verified, respectively. The frequency parameters, modal shapes, and forced vibration responses are uniformly calculated based on the proposed method. Finally, the dynamic analyses of the FGP annular and circular plates with different parameters, such as the porosity distribution types, porosity ratios, boundary condition types, geometry parameters, and load types, are conducted in detail. It is found that the reasonable porous design is able to keep the dynamic stability of the structure under different parameter variations.


Sign in / Sign up

Export Citation Format

Share Document