Phylogenetic position of Aphelenchus avenae (Nematoda: Aphelenchidae) using 28S rDNA from South Africa

2021 ◽  
Vol 22 (3) ◽  
2003 ◽  
Vol 40 (4) ◽  
pp. 527-556 ◽  
Author(s):  
Michael deBraga

A morphological study of the postcranial skeleton of Procolophon trigoniceps from the Lower Triassic of South Africa and Antarctica is undertaken. Procolophon shares a sister-group relationship with the procolophonid Tichvinskia from the Lower Triassic of Russia and is a basal member of Procolophonidae. This clade also includes the enigmatic taxon Sclerosaurus, believed most recently to be a pareiasaur relative. Owenettids form a separate lineage from Procolophonidae and are predominantly restricted to the Permian of both South Africa and Madagascar. A phylogenetically based assessment is considered, in which specialized modern taxa (sand lizards) are compared to their nonfossorial sister clade, allowing for "key innovations" to be identified. A similar comparison between owenettids and procolophonids reveals a number of apparent "key innovations" within procolophonids that are suggestive of a burrowing lifestyle for Procolophon.


Zootaxa ◽  
2012 ◽  
Vol 3485 (1) ◽  
pp. 1 ◽  
Author(s):  
CATHERINE S. MCFADDEN ◽  
LEEN P. VAN OFWEGEN

Based on the results of morphological and molecular phylogenetic analyses of newly collected material, we reinstate thesoft coral genus Eunephthya Verrill, 1869 for a group of species endemic to South Africa. Eunephthya is morphologicallyand phylogenetically distinct from the zooxanthellate, tropical genus Capnella Gray, 1869 with which it had been synon-ymized. In Eunephthya the polyp sclerites include unilaterally spinose or leaf spindles, and the sclerites of the stalk surfaceand interior (when present) are small radiates and spheroids. In contrast, C. imbricata, the type species of Capnella, hasleaf clubs and leaf-capstans in the polyps and stalk surface, and large ovals and irregular forms in the interior. We describefour new species of Eunephthya from Algoa Bay, South Africa—E. celata, E. ericius, E. granulata, and E. shirleyae— and propose a new combination, E. susanae.Keywords. Molecular phylogenetics, Capnella, mtMutS, COI, 28S rDNA, endemism


MycoKeys ◽  
2018 ◽  
Vol 41 ◽  
pp. 51-63 ◽  
Author(s):  
M. Ebinghaus ◽  
D. Begerow

Two new rust species, Raveneliapiepenbringiae and R.hernandezii (Pucciniales) on Senegalia spp. (Fabaceae) are described from the Neotropics (Panama, Costa Rica). A key to the species on neotropical Senegalia spp. is provided. Molecular phylogenetic analyses based on 28S rDNA sequence data suggest that the representatives of Senegalia rusts distributed in the neotropics evolved independently from species known from South Africa. This is further supported by the teliospore morphology, which is characterised by uniseriate cysts in the neotropical Senegalia rusts and contrasting multiseriate cysts in the paleotropic Ravenelia species that infect this host genus.


2015 ◽  
Vol 90 (3) ◽  
pp. 262-278 ◽  
Author(s):  
A.P. Malan ◽  
R. Knoetze ◽  
L.R. Tiedt

AbstractDuring a non-targeted survey for entomopathogenic nematodes in South Africa, a new species of Steinernema was isolated from a soil sample collected from underneath a guava tree, close to the shore at Jeffrey's Bay. The nematode was isolated by means of the insect-baiting technique using last-instar larvae of Galleria mellonella. It is described herein as Steinernema jeffreyense n. sp. The nematode can be separated from other described, closely related species in terms of the morphological and morphometric characteristics of the different life stages, and in terms of the characterization and phylogeny of DNA sequences of the internal transcribed spacer (ITS) rDNA of the 18S gene, and of the D2D3 region of the 28S rDNA gene. The new species is placed molecularly in the arenarium–glaseri–karii–longicaudatum group characterized by the following morphological characters: infective third-stage juvenile with a body length of 926 (784–1043) μm, distance from head to excretory pore of 87 (78–107) μm, tail length of 81 (50–96) μm, with an E% of 109 (86–169), and eight evenly spaced ridges (i.e. nine lines) in the middle of the body. First-generation males have a spicule length of 88 (79–95) μm and gubernaculum length of 57 (51–61) μm. Male mucron is absent in both generations. First-generation females have an asymmetrical protuberance and a short, double-flapped epiptygmata, with both flaps directed to the front. The tail of the first-generation female is shorter than the anal body width, with a mucron on the dorsal tail tip, with D% = 78 (59–99). Cross-hybridization with S. khoisanae, S. tophus and S. innovationi showed the new species to isolate reproductively from the others. The analyses of ITS rDNA and D2D3 sequence of the 18S and 28S rDNA genes support the studied nematode isolate to be a valid new species belonging to the ‘glaseri’ group (Clade V).


2016 ◽  
Vol 30 (1) ◽  
pp. 75 ◽  
Author(s):  
Mark S. Harvey ◽  
Joel A. Huey ◽  
Mia J. Hillyer ◽  
Erin McIntyre ◽  
Gonzalo Giribet

Fully troglobitic pseudoscorpions are rare in the Afrotropical Region, and we explored the identity and phylogenetic relationships of specimens of a highly modified troglobite of the family Gymnobisiidae in the dark zone of the Wynberg Cave system, on Table Mountain, South Africa. This large pseudoscorpion – described as Gymnobisium inukshuk Harvey & Giribet, sp. nov. – lacks eyes and has extremely long appendages, and has been found together with other troglobitic fauna endemic only to this cave system. Phylogenetic analyses using the nuclear ribosomal genes 18S rRNA and 28S rRNA and the mitochondrial protein-encoding gene cytochrome c oxidase subunit I unambiguously place the new species with other surface Gymnobisium from South Africa. This placement receives strong support and is stable to analytical treatments, including static and dynamic homology, parsimony and maximum likelihood, and data removal for ambiguously aligned sites. This species is the first troglobitic species of the family and one of the most highly modified pseudoscorpions from the Afrotropical Region. http://zoobank.org/urn:lsid:zoobank.org:pub:5227092B-A64B-4DB3-AD90-F474F0BA6AED


2016 ◽  
Vol 53 (2) ◽  
pp. 161-164 ◽  
Author(s):  
S. G. Sokolov ◽  
D. I. Lebedeva ◽  
A. P. Kalmykov

SummaryThe trematode Amurotrema dombrowskajae Achmerow, 1959, is the type and the only species of the paramphistomoid genus Amurotrema Achmerow, 1959. This intestinal parasite of grass carp (Ctenopharyngodon idella) was introduced with host to the Volga River Delta. These naturalized trematodes were found by the authors in 2014 – 2015. In the present study the phylogenetic position of Amurotrema dombrowskajae is analysed using partial 28S rDNA nucleotide sequences. Bayesian inference and Maximum Likelihood analyses place this species in a clade with representatives of the family Cladorchiidae - Megalodiscus temperatus (Stafford, 1905) and Indosolenorchis hirudinaceus Crusz, 1951. Thus, molecular data are consistent with the traditional view on the position of A. dombrowskajae in this family.


2012 ◽  
Vol 57 (1-4) ◽  
pp. 47-64
Author(s):  
Anshu Chaudhary ◽  
Hridaya Shanker Singh

Abstract The present study is a brief description of the morphology and molecular phylogeny of Malayanodiscoides bihamuli Lim and Furtado, 1986 infecting gill filaments of fish Notopterus chitala (Hamilton). The phylogenetic study was made of M. bihamuli and closely related taxa using DNA sequence data obtained from 28S rDNA region. Morphology as well as molecular phylogeny strongly supports the establishment of genus Malayanodiscoides and also demonstrates its close relationship with other genera of class Monogenea. In addition, the 28S secondary structure model was predicted and found to serve as a useful tool for reconstruction of optimal alignment and can be used as an additional source of data incorporating structural parameters of molecules for the study of phylogeny. Application of the secondary 28S structure data allows a more resolved and realistic picture of relationships. Results also demonstrate the phylogenetic utility of the 28S sequence secondary structure data for inferences at higher taxonomic levels.


Sign in / Sign up

Export Citation Format

Share Document