scholarly journals DEVELOPMENT OF INTELLIGENT SELF-BALANCING E-BIKE USING MACHINE LEARNING

2021 ◽  
pp. 966-979

The self-driving autonomous cars is becoming an increasingly popular concept all around the world but the area of self-driving two wheelers is still under developed. For developing countries like India, two wheelers are affordable than cars for most of the population. The project aims at developing intelligent self-balancing bike using artificial intelligence because the major problem in developing an autonomous bike is in the area of balancing. Even though there are many working mechanisms available for self-balancing of bike, the implementation of AI will be an edge over others from the point of computational power requirement and the programming complexity incurred. A prototype of the bike was developed with reaction wheel mechanism for self-balancing. The mechanism was fully controlled by AI by preventing the need of explicit programming for balancing which was the earlier technique used in self-balancing bike. Reinforcement learning, a type of machine learning technique is adopted for this purpose. The policy gradient algorithm was used to make the bike learn by itself for balancing. Even though the AI algorithm worked well in the virtual environment (balancing a cart-pole) it fails in the real environment. (i.e. it fails to balance the bike). It is because of the noisy data from the sensor, which gives inaccurate information about the orientation of the bike. The noise in the data is due to the vibration of the body when the reaction wheel rotates. This could be solved if the AI is fed with accurate information about the orientation of the vehicle.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Baochao Fan ◽  
Yanghui Li ◽  
Guihua Wen ◽  
Yan Ren ◽  
Yantong Lu ◽  
...  

Background. Body constitution (BC) is the abstract concept indicating the state of a person’s health in Traditional Chinese Medicine (TCM). The doctor identifies the body constitution of the patient through inspection and inquiry. Previous research simulates doctors to identify BC types according to a patient’s objective physical indicators. However, the lack of subjective feeling information can reduce the accuracy of the machine to imitate the doctor’s diagnosis. The Constitution in Chinese Medicine Questionnaire (CCMQ) is used to collect subjective information but suffers from low acquisition efficiency. Methods. This paper presents a personalized body constitution inquiry method based on a machine learning technique. It employs a random generator, a feature extractor, and a classifier to simulate the doctor inquiry and generate a personalized questionnaire. Specifically, the feature extractor evaluates and sorts the question of the constitution in the CCMQ based on the recognition results of the tongue coating image of patients. The sorted questions and relevant BC label are inputted into the classifier; the best questions are screened out for patients. Results. The experimental results show that our method can select personalized questions from the CCMQ for the patients, significantly reducing the time and the number of questions to answer. It also improves the accuracy of recognizing BC. Compared with the CCMQ, patients had 68.3% fewer questions to answer and the time occupied by answering is reduced by 80.3%. Conclusions. The proposed method can simulate the doctor's inquiry and pick out personalized questions for patients. It can act as auxiliary diagnosis tools to collect subjective patient feelings and help make further judgments on the patient’s BC types.


1996 ◽  
Vol 35 (04/05) ◽  
pp. 309-316 ◽  
Author(s):  
M. R. Lehto ◽  
G. S. Sorock

Abstract:Bayesian inferencing as a machine learning technique was evaluated for identifying pre-crash activity and crash type from accident narratives describing 3,686 motor vehicle crashes. It was hypothesized that a Bayesian model could learn from a computer search for 63 keywords related to accident categories. Learning was described in terms of the ability to accurately classify previously unclassifiable narratives not containing the original keywords. When narratives contained keywords, the results obtained using both the Bayesian model and keyword search corresponded closely to expert ratings (P(detection)≥0.9, and P(false positive)≤0.05). For narratives not containing keywords, when the threshold used by the Bayesian model was varied between p>0.5 and p>0.9, the overall probability of detecting a category assigned by the expert varied between 67% and 12%. False positives correspondingly varied between 32% and 3%. These latter results demonstrated that the Bayesian system learned from the results of the keyword searches.


Author(s):  
Aleksey Klokov ◽  
Evgenii Slobodyuk ◽  
Michael Charnine

The object of the research when writing the work was the body of text data collected together with the scientific advisor and the algorithms for processing the natural language of analysis. The stream of hypotheses has been tested against computer science scientific publications through a series of simulation experiments described in this dissertation. The subject of the research is algorithms and the results of the algorithms, aimed at predicting promising topics and terms that appear in the course of time in the scientific environment. The result of this work is a set of machine learning models, with the help of which experiments were carried out to identify promising terms and semantic relationships in the text corpus. The resulting models can be used for semantic processing and analysis of other subject areas.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


Author(s):  
Fahad Taha AL-Dhief ◽  
Nurul Mu'azzah Abdul Latiff ◽  
Nik Noordini Nik Abd. Malik ◽  
Naseer Sabri ◽  
Marina Mat Baki ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 798
Author(s):  
Hamed Darbandi ◽  
Filipe Serra Bragança ◽  
Berend Jan van der Zwaag ◽  
John Voskamp ◽  
Annik Imogen Gmel ◽  
...  

Speed is an essential parameter in biomechanical analysis and general locomotion research. It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumulate during IMU signals integration. In an attempt to overcome these issues, we have investigated the possibility of estimating the horse speed by developing machine learning (ML) models using the signals from seven body-mounted IMUs. Since motion patterns extracted from IMU signals are different between breeds and gaits, we trained the models based on data from 40 Icelandic and Franches-Montagnes horses during walk, trot, tölt, pace, and canter. In addition, we studied the estimation accuracy between IMU locations on the body (sacrum, withers, head, and limbs). The models were evaluated per gait and were compared between ML algorithms and IMU location. The model yielded the highest estimation accuracy of speed (RMSE = 0.25 m/s) within equine and most of human speed estimation literature. In conclusion, highly accurate horse speed estimation models, independent of IMU(s) location on-body and gait, were developed using ML.


Sign in / Sign up

Export Citation Format

Share Document