Adsorptive characteristics of modified talcum powder in removing methylene blue from wastewater

2014 ◽  
Vol 26 (3) ◽  
pp. 167-175 ◽  
Author(s):  
Liu Wenlei ◽  
Zhao Shanlin ◽  
Cui Shuang ◽  
Zhang Jinhui ◽  
Li Ping ◽  
...  
Keyword(s):  
2012 ◽  
Vol 610-613 ◽  
pp. 1443-1448
Author(s):  
Wen Lei Liu ◽  
Shan Lin Zhao ◽  
Shuang Cui ◽  
Shuang Chun Yang ◽  
Li Yan Shang

The preparation conditions of modified talcum powder were investigated by discuss the effects of nitric acid mass concentration, nitric acid soak temperature, roasting temperature and roasting time on adsorption properties of methylene blue by talcum powder. Methylene blue dye, as target pollutant, exhibits difficult biochemical degradable characters. The adsorption isotherm of adsorption process was discussed by using the Langmuir isotherm model and Freundlich isotherms model. The results show that the rate of adsorption of methylene blue decreased with the increasing of roasting temperatures and nitric acid soak temperature of modificated talcum powder. The adsorption value of methylene blue of the modified talcum powder increased gradually,then decreased with the increase of roasting time. Compare with the unmodified talcum powder,the adsorption value of methylene blue of the modified talcum powder decreased when roasting temperature and roasting time is too high. With the nitric acid mass concentration increasing, the adsorption of methylene blue on the modified talcum powder increased. It is found that the adsorptive ability of modified talcum powder by HNO3 is higher than original talcum powder. The best talcum powder modified preparation condition is that nitric acid mass concentration 50%, the nitric acid soaks temperature 40°C, calcined temperature 200°C for 120 mins. The removal rate of methylene blue is 84.6% under these preparation conditions. The experimental date fitted very well with the Langmuir isotherms model.


2015 ◽  
Vol 80 (4) ◽  
pp. 563-574 ◽  
Author(s):  
Si-Fan Li ◽  
Shuang-Chun Yang ◽  
Shan-Lin Zhao ◽  
Ping Li ◽  
Jin-Hui Zhang

Batch adsorption experiments for removal of methylene blue from a aqueous solution onto talcum powder were investigated using microwave and acetic acid modified talcum powder. In batch adsorption experiments for methylene blue by a new sorbent, the influences of particle size of talcum powder, acid concentration, acidification time, acidification temperature, radiation time and radiation power were investigated. The results showed that the removal efficiency of methylene blue is up to 83.03% in the optimum conditions, namely, the talcum powder of 1250 mesh size were treated with 1 mol/L acetic acid at 313K for 9h and microwave radiation power and time was 600W and 5min, respectively. The modified talcum powder was characterized by the Fourier Transform Infrared Spectroscopy, X-ray diffraction and Scanning Electronic Microscopy. Because of the active groups OH- and the broken Si-O- and the cracks produced from face surface of modified talcum powder, the adsorptive capability of adsorbent was greatly enhanced.


Author(s):  
B. J. Panessa ◽  
J. F. Gennaro

Tissue from the hood and sarcophagus regions were fixed in 6% glutaraldehyde in 1 M.cacodylate buffer and washed in buffer. Tissue for SEM was partially dried, attached to aluminium targets with silver conducting paint, carbon-gold coated(100-500Å), and examined in a Kent Cambridge Stereoscan S4. Tissue for the light microscope was post fixed in 1% aqueous OsO4, dehydrated in acetone (4°C), embedded in Epon 812 and sectioned at ½u on a Sorvall MT 2 ultramicrotome. Cross and longitudinal sections were cut and stained with PAS, 0.5% toluidine blue and 1% azure II-methylene blue. Measurements were made from both SEM and Light micrographs.The tissue had two structurally distinct surfaces, an outer surface with small (225-500 µ) pubescent hairs (12/mm2), numerous stoma (77/mm2), and nectar glands(8/mm2); and an inner surface with large (784-1000 µ)stiff hairs(4/mm2), fewer stoma (46/mm2) and larger, more complex glands(16/mm2), presumably of a digestive nature.


2012 ◽  
Vol 60 (S 01) ◽  
Author(s):  
H Weiler ◽  
O Moeller ◽  
M Wohlhoefer ◽  
LO Conzelmann ◽  
J Albers ◽  
...  

2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
I. Kanzler ◽  
F. Guo ◽  
N. Bogert ◽  
A. Moritz ◽  
A. Beiras-Fernandez

2019 ◽  
Author(s):  
A Repici ◽  
C Hassan ◽  
R Bisschops ◽  
P Bhandari ◽  
E Dekker ◽  
...  

Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


Sign in / Sign up

Export Citation Format

Share Document