scholarly journals Distribution of Cenozoic metalliferous coal deposits in Zeya-Bureya Sedimentary Basin (Eastern Siberia): Tectonic reconstruction and paleogeographic analysis

2019 ◽  
pp. 33-45 ◽  
Author(s):  
A. P. Sorokin ◽  
A. A. Konyushok ◽  
V. M. Kuzminykh ◽  
T. V. Artyomenko ◽  
A. A. Popov

Distribution of noble metals, rare metals and rare earth elements in the Paleocene and Lower-Middle Miocene coals of Zeya-Bureya sedimentary basin was analyzed. Reconstruction of the basin formation in the Mesozoic and Cenozoic was performed with detailed paleogeographic analysis of the Cenozoic coal-bearing sequences from the position of geodynamic features of the adjacent regions development. Geological events at the turn of the Cretaceous and Paleogene are considered. Comprehensive analysis of the metal content in the basin frame carried out. We described conditions of migration and localization of trace elements. Given conditions arose mainly in the process of geodynamics developed on the northwestern flank of the Zeya-Bureya basin including the static orogens in the Paleocene — Miocene where the sedimentation was actively expanding. Microelements migration with capturing denudation plains occurred in stable processes of peat accumulation and localization of economically important components in streams associated with plains. Contrasting forms of conjugation in the flexure-uplift system and uneven localization of microelements are determined by high level of geodynamic activity on the south-eastern margin of Zeya-Bureya sedimentary basin. The presence of gold throughout the strata of the Paleocene and Lower-Middle Miocen coal-bearing sediments in the Sergeevskoe, Yerkovetskoe and Raychikhinskoe deposits is established. The Sergeevskoe deposit coals are enriched with Be, Sc, V, Ga, Rb, Nb, Ta, REE + Y.

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 682
Author(s):  
Anatoliy Petrovich Sorokin ◽  
Andrey Alexeyevich Konyushok ◽  
Valeriy Mikhailovich Kuz’minykh ◽  
Sergey Vadimovich Dugin

The primary sources and the conditions for the formation of the Paleogene–Neogene coal-bearing deposits in the Zeya–Bureya sedimentary basin were identified and studied with the help of paleogeographic reconstructions and geochemical analyses. Based on the results obtained, we suggest a new basic model of element transfer into the coal, involving two mutually complementary processes to account for the introduction and concentration of gold and other trace elements in the sequences investigated. The first process reflects the system in which peatlands were concentrated along the basin’s junction zone and the passive internal residual mountain ranges. The second reflects the junction’s contrast-type (sharp-type) forms conditions along the external mobile mountain-fold frame. The eroded gold particles were transported over 10–20 km as complex compounds, colloids, dispersed particles, and nanoparticles, and remobilized into clastogenic and dissolved forms along the first few kilometers. The release of gold in the primary sources occurred due to weathering of gold-bearing ore zones, followed by transportation of gold by minor rivers to the areas of peat accumulation. This study considered the probability of the accumulation of high concentrations of gold and rare earth elements (REE) in coal due to the introduction of organic and inorganic materials during floods, with episodes of catastrophic events, and volcano–hydrothermal activities.


2019 ◽  
Vol 54 (1) ◽  
pp. 34
Author(s):  
Nikolaos Koukouzas ◽  
Pavlos Krassakis ◽  
Petros Koutsovitis ◽  
Christos Karkalis

A considerable amount of coal deposits occur within the Mesohellenic Trough in Greece. It is considered as the largest and most important basin of the last orogenic stage of the Hellenides, which is interpreted as a back-arc basin that evolved during the period of Late Oligocene to Miocene. In this study, a simplified geological map has been constructed emphasizing on the coal formation occurrences of the Mesohellenic Trough. This work has been accomplished, through Geographic Information Systems (GIS) and has been organized via geodatabase as GIS data files (feature classes). For the creation of the geological map suitable homogenization and discrete representation has been implemented different geological sheets, original source and traditional maps. Next step was the geostatistical analysis using polygonal methods linked to the corresponding tabular information. Regarding the stratigraphical age, and petrographic data related to geographic distribution of the coal occurrences, these are divided into three categories: Oligocene, Middle Miocene and Upper Miocene coals, exhibiting various physicochemical and topological properties. Upper Miocene coal exhibits the greatest area and perimeter values, while the lowest values correspond to those of the Middle Miocene. Terrain models such as aspect (angle-direction) and hillshade (shaded relief) showed the spatial relation between coal occurrences and morphotectonic as long as geometrical characteristics of the study area. Coals are mainly classified as huminites including mainly huminite group minerals (90%). Their S contents can probably derive from parent plant material or a combination of parent plant material with seawater sulfates. Moisture contents are strongly connected with the sustainability of the coal use in the energy production, while their carbonation grade is strongly associated with their age and expressed by their reflectivity values. All these data have been inserted in an integrated database and can be useful for pre-mining or post mining activities (e.g. planning, analysis, management, restoration). Results of this study are available for the effective evaluation of the existing coal occurrences, which can be used with renewable energy sources providing sustainable solutions, in combination with the upcoming innovative CCS and CCU technologies. Results also showed that coals from the Mesohellenic Trough present excellent quality traits. However, their value as combustible coal is very low due to the absence of economically recoverable reserves. The largest coal lenticular bodies have been extracted in the past and the remaining occurrences do not exceed several thousand tones. Based upon existing literature and from geospatial estimations, coal deposits in the Mesohellenic Trough Basin cannot be considered as economically valuable for exploitation.


Eos ◽  
2006 ◽  
Vol 87 (47) ◽  
pp. 528 ◽  
Author(s):  
Millard F. Coffin ◽  
Dale S. Sawyer ◽  
Timothy J. Reston ◽  
Joann M. Stock

1998 ◽  
Vol 300 (1-4) ◽  
pp. 1-11 ◽  
Author(s):  
S Cloetingh ◽  
L.O Boldreel ◽  
B.T Larsen ◽  
M Heinesen ◽  
L Mortensen

Sign in / Sign up

Export Citation Format

Share Document