scholarly journals Studies of the powdery-mildew fungus,Leveillula taurica,on green pepper. III. Histochemical observation of osmiophillic granule associated with haustoria and intercellular hyphae.

1981 ◽  
Vol 47 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hitoshi KUNOH ◽  
Hitoshi TAKESHIMA ◽  
Hiroshi ISHIZAKI
1979 ◽  
Vol 57 (22) ◽  
pp. 2501-2508 ◽  
Author(s):  
Hitoshi Kunoh ◽  
Mitsuru Kohno ◽  
Sadayoshi Tashiro ◽  
Hiroshi Ishizaki

Almost all ultrastructural studies of powdery-mildew fungi have been focused on the epiparasitic fungi. In this paper, one of the endoparasitic powdery-mildew fungi, Leveillula taurica (Lev.) Arn., on green pepper (Capsicum annuum L. var. angulosum Mill.) leaves was investigated by light and electron microscopy. Most germinated conidia formed a lobed adhesion body (similar to the appressorium in morphology but different in function) before stomatal invasion. The track of the adhesion body on the leaf epidermis was depressed, and no cuticular perforations were observed in it. After stomatal invasion, infection hyphae grew extensively into the intercellular spaces of the leaves and formed haustoria in the spongy- and palisade-parenchyma cells. The haustorium was flask shaped with a neck arising from the intercellular hypha. The overall profiles of the haustorium resembled those of epiphytic powdery-mildew fungi of other authors; the haustorium was composed of a nucleate central body and many anucleate lobes, and the entire structure was bounded by an extrahaustorial membrane. Papillae consisting of three distinct regions formed against the outer cell walls at the site of penetration. The most obvious alteration in infected host cells was a marked increase in the number of large lipid bodies. Lipid bodies increased in number with time after haustorial formation. They appeared first in the host cytoplasm near the extrahaustorial membrane, then in the extrahaustorial matrix and haustorial body.


2006 ◽  
Vol 7 (1) ◽  
pp. 60
Author(s):  
Dean A. Glawe ◽  
Gary G. Grove ◽  
Mark Nelson

During recent surveys of fieldgrown Gaillardia × grandiflora (Blanket flower) in Yakima Co., WA, a powdery mildew disease was observed on the cv. ‘Baby Cole.’ This report documents the occurrence of the powdery mildew fungus in question (Leveillula taurica (Lév.) G. Arnaud) on Gaillardia × grandiflora and provides information on disease symptomatology as well as features distinguishing this fungus from other powdery mildew pathogens of Gaillardia in North America. Accepted for publication 8 December 2005. Published 12 January 2006.


Genetics ◽  
2020 ◽  
Vol 217 (2) ◽  
Author(s):  
Antony V E Chapman ◽  
Matthew Hunt ◽  
Priyanka Surana ◽  
Valeria Velásquez-Zapata ◽  
Weihui Xu ◽  
...  

Abstract Barley (Hordeum vulgare L.) Mla (Mildew resistance locus a) and its nucleotide-binding, leucine-rich-repeat receptor (NLR) orthologs protect many cereal crops from diseases caused by fungal pathogens. However, large segments of the Mla pathway and its mechanisms remain unknown. To further characterize the molecular interactions required for NLR-based immunity, we used fast-neutron mutagenesis to screen for plants compromised in MLA-mediated response to the powdery mildew fungus, Blumeria graminis f. sp. hordei. One variant, m11526, contained a novel mutation, designated rar3 (required for Mla6 resistance3), that abolishes race-specific resistance conditioned by the Mla6, Mla7, and Mla12 alleles, but does not compromise immunity mediated by Mla1, Mla9, Mla10, and Mla13. This is analogous to, but unique from, the differential requirement of Mla alleles for the co-chaperone Rar1 (required for Mla12 resistance1). We used bulked-segregant-exome capture and fine mapping to delineate the causal mutation to an in-frame Lys-Leu deletion within the SGS domain of SGT1 (Suppressor of G-two allele of Skp1, Sgt1ΔKL308–309), the structural region that interacts with MLA proteins. In nature, mutations to Sgt1 usually cause lethal phenotypes, but here we pinpoint a unique modification that delineates its requirement for some disease resistances, while unaffecting others as well as normal cell processes. Moreover, the data indicate that the requirement of SGT1 for resistance signaling by NLRs can be delimited to single sites on the protein. Further study could distinguish the regions by which pathogen effectors and host proteins interact with SGT1, facilitating precise editing of effector incompatible variants.


Nature ◽  
1966 ◽  
Vol 209 (5026) ◽  
pp. 938-938 ◽  
Author(s):  
G. J. M. A. GORTER

Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 797-803 ◽  
Author(s):  
Renuka N. Attanayake ◽  
Dean A. Glawe ◽  
Frank M. Dugan ◽  
Weidong Chen

The taxonomy of the powdery mildew fungus infecting lentil in the Pacific Northwest (PNW) of the United States was investigated on the basis of morphology and rDNA internal transcribed spacer (ITS) sequences. Anamorphic characters were in close agreement with descriptions of Erysiphe trifolii. However, teleomorphs formed chasmothecial appendages with highly branched apices, whereas E. trifolii has been described as producing flexuous or sometimes loosely branched appendages. Branched appendages have been described in Erysiphe diffusa, a fungus reported from species of Lens, Glycine, and Sophora, raising the possibility that the PNW fungus could be E. diffusa. Examination of morphological characters of an authentic specimen of E. trifolii from Austria determined that it included chasmothecial appendages resembling those seen in PNW specimens. Furthermore, ITS sequences from five powdery mildew samples collected from lentils in PNW greenhouses and fields from 2006 to 2008 were identical to one another, and exhibited higher similarity to sequences of E. trifolii (99%) than to those of any other Erysiphe spp. available in GenBank. Parsimony analysis grouped the lentil powdery mildew into a clade with Erysiphe baeumleri, E. trifolii, and E. trifolii–like Oidium sp., but indicated a more distant relationship to E. diffusa. In greenhouse inoculation studies, the lentil powdery mildew fungus did not infect soybean genotypes known to be susceptible to E. diffusa. The pathogenicity of E. trifolii on lentil was confirmed using modified Koch's postulates. This is the first report of E. trifolii infecting lentil. E. diffusa and E. trifolii have different host ranges, so the discovery of E. trifolii on lentil has implications both for determining species of powdery mildews on cool-season grain legumes, and in disease management.


2010 ◽  
Vol 23 (9) ◽  
pp. 1217-1227 ◽  
Author(s):  
Ruth Eichmann ◽  
Melanie Bischof ◽  
Corina Weis ◽  
Jane Shaw ◽  
Christophe Lacomme ◽  
...  

BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death–provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.


Sign in / Sign up

Export Citation Format

Share Document