scholarly journals Analytical Evaluation of Seismic Response Reduction Factor for Steel Frame Building by Using Various Types of Steel Bracing

Author(s):  
Swapnil M. Patil ◽  
P.M. Pawar
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Aditya Kushwah ◽  
Aditya Kushwah ◽  
Aditya Kushwah

According to IS 1893 part 1 (2016), the philosophy of earthquake resistant structures allows for some damages and inelastic lateral displacement in the structure for energy dissipation during an earthquake. The non-linear behaviour of elements in the structure plays a crucial role in earthquake resistance. There are three detailed classes for distinct seismic zones in different national codes. In India, the draught IS 13920 advocated the usage of IMRF (intermediate moment resisting frame) in zones II and III. The 5 story IMRF is designed and detailed as per IS 1893 (part 1) 2016, IS 13920 (2016), IS 1893 draft, IS 13920 draft, IS 456 (2000). In addition, nonlinear static pushover analysis was performed on IMRF and SMRF RC frame buildings in accordance with FEMA 356. (Displacement Coefficient method) During the analysis, two distinct load patterns (i) parabolic as per IS 1893 (part 1) 2016 (ii) fundamental mode shape are utilised, and the influence of p-delta is also taken into account when evaluating the response reduction factor. The analysed R-factor for studied frame building for fundamental mode shape loading was found to be near to the initial estimated R-factor during the design.


10.29007/m72w ◽  
2018 ◽  
Author(s):  
Kunjan D. Gamit ◽  
Jignesh A. Amin

This study investigates the direct displacement based design (DDBD) and convectional force based design (FBD) approach for 8 storey RC frame building in DDBD methodology the displacement profile is calculated and the given MDOF is converted to equivalent single degree of freedom system. After calculating the effective period, secant stiffness, and viscous damping of the equivalent structure, the base shear is obtained, based on which the design and detailing process can be carried out. The designed frames as per DDBD and FBD approach are then analyzed using nonlinear pushover analysis to obtain the capacity curves and response reduction factor. Results of the analysis and comparison of ‘R’ factor indicate the efficiency of the DDBD approach for RC frame buildings


2021 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Mangeshkumar R. Shendkar ◽  
Denise-Penelope N. Kontoni ◽  
Sasankasekhar Mandal ◽  
Pabitra Ranjan Maiti ◽  
Dipendra Gautam

The primary focus of this study is to evaluate the nonlinear response of reinforced concrete (RC) frames with two types of brick infills viz., unreinforced brick masonry infill (URM) and semi-interlocked brick masonry infill (SIM) together with lintel beams, subjected to seismic loads. The seismic response is quantified in terms of response reduction factor and base shear. Infill walls are modeled using double strut nonlinear cyclic element. Nonlinear static adaptive pushover analysis is performed in the finite element program SeismoStruct. The response reduction factor (R) is computed from adaptive pushover analysis and performance for all models is obtained. The results showed that the average R factor of the RC framed structure with semi-interlocked masonry (SIM) is 1.31 times higher than the RC frame with unreinforced masonry (URM) infill. The R value of the bare frame with the lintel beam is found to be less than the corresponding value recommended in the Indian Standard Code. The results obtained in this study highlight that if the impacts of lintel beams and various brick infill scenarios are considered in the RC frames then the R values used for the design of RC frame buildings with infills would be underestimated (i.e., the evaluated R values are greater than the R values used for the design purpose).


2019 ◽  
Vol 10 (1) ◽  
pp. 48-55
Author(s):  
Parthasarathi N. ◽  
Satyanarayanan K.S. ◽  
Prakash M. ◽  
Thamilarasu V.

Purpose Progressive collapse because of high temperatures arising from an explosion, vehicle impact or fire is an important issue for structural failure in high-rise buildings. Design/methodology/approach The present study, using ABAQUS software for the analysis, investigated the progressive collapse of a two-dimensional, three-bay, four-storey steel frame structure from high-temperature stresses. Findings After structure reaches the temperature results like displacement, stress axial load and shear force are discussed. Research limitations/implications Different temperatures were applied to the columns at different heights of a structure framed with various materials. Progressive collapse load combinations were also applied as per general service administration guidelines. Originality/value This study covered both steady-state and transient-state conditions of a multistorey-frame building subjected to a rise in temperature in the corner columns and intermediate columns. The columns in the framed structure were subjected to high temperatures at different heights, and the resulting displacements, stresses and axial loads were obtained, analysed and discussed.


Sign in / Sign up

Export Citation Format

Share Document