scholarly journals Neuroimaging-based biomarkers for treatment selection in major depressive disorder

2014 ◽  
Vol 16 (4) ◽  
pp. 479-490 ◽  

The use of neuroimaging approaches to identify likely treatment outcomes in patients with major depressive disorder is developing rapidly. Emerging work suggests that resting state pretreatment metabolic activity in the fronto-insular cortex may distinguish between patients likely to respond to psychotherapy or medication and may function as a treatment-selection biomarker. In contrast, high metabolic activity in the subgenual anterior cingulate cortex may be predictive of poor outcomes to both medication and psychotherapy, suggesting that nonstandard treatments may be pursued earlier in the treatment course. Although these findings will require replication before clinical adoption, they provide preliminary support for the concept that brain states can be measured and applied to the selection of a specific treatment most likely to be beneficial for an individual patient.

2014 ◽  
Vol 44 (15) ◽  
pp. 3263-3273 ◽  
Author(s):  
E. Rodríguez-Cano ◽  
S. Sarró ◽  
G. C. Monté ◽  
T. Maristany ◽  
R. Salvador ◽  
...  

Background.The subgenual anterior cingulate cortex (sgACC) is considered to be an important site of abnormality in major depressive disorder. However, structural alterations in this region have not been a consistent finding and functional imaging studies have also implicated additional areas.Method.A total of 32 patients with major depressive disorder, currently depressed, and 64 controls underwent structural imaging with MRI. Also, 26 patients and 52 controls were examined using functional magnetic resonance imaging (fMRI) during performance of the n-back working memory task. Structural and functional changes were evaluated using whole-brain, voxel-based methods.Results.The depressed patients showed volume reductions in the sgACC and orbitofrontal cortex bilaterally, plus in both temporal poles and the hippocampus/parahippocampal gyrus on the left. Functional imaging revealed task-related hypoactivation in the left lateral prefrontal cortex and other regions, as well as failure of deactivation in a subcallosal medial frontal cortical area which included the sgACC.Conclusions.Whole-brain, voxel-based analysis finds evidence of both structural and functional abnormality in the sgACC in major depressive disorder. The fact that the functional changes in this area took the form of failure of deactivation adds to previous findings of default mode network dysfunction in the disorder.


2016 ◽  
Vol 22 (1) ◽  
pp. 113-119 ◽  
Author(s):  
J Ernst ◽  
A Hock ◽  
A Henning ◽  
E Seifritz ◽  
H Boeker ◽  
...  

2012 ◽  
Vol 43 (6) ◽  
pp. 1219-1230 ◽  
Author(s):  
N. L. Nixon ◽  
P. F. Liddle ◽  
G. Worwood ◽  
M. Liotti ◽  
E. Nixon

BackgroundRecent models of major depressive disorder (MDD) have proposed the rostral anterior cingulate (rACC) and dorsomedial prefrontal cortex (dmPFC) as nexus sites in the dysfunctional regulation of cognitive-affective state. Limited evidence from remitted-state MDD supports these theories by suggesting that aberrant neural activity proximal to the rACC and the dmPFC may play a role in vulnerability to recurrence/relapse within this disorder. Here we present a targeted analysis assessing functional activity within these two regions of interest (ROIs) for groups with identified vulnerability to MDD: first, remitted, high predicted recurrence-risk patients; and second, patients suffering observed 1-year recurrence.MethodBaseline T2* images sensitive to blood oxygen level-dependent (BOLD) contrast were acquired from patients and controls during a Go/No-Go (GNG) task incorporating negative feedback, with 1-year patient follow-up to identify recurrence. BOLD contrast data for error commission (EC) and visual negative feedback (VNF) were used in an ROI analysis based on rACC and dmPFC coordinates from the literature, comparing patientsversuscontrols and recurrenceversusnon-recurrenceversuscontrol groups.ResultsAnalysis of patients (n = 20)versuscontrols (n = 20) showed significant right dmPFC [Brodmann area (BA) 9] hypoactivity within the patient group, co-localized during EC and VNF, with additional significant rACC (BA 32) hypoactivity during EC. The results from the follow-up analysis were undermined by small groups and potential confounders but suggested persistent right dmPFC (BA 9) hypoactivity associated with 1-year recurrence.ConclusionsConvergent hypoactive right dmPFC (BA 9) processing of VNF and EC, possibly impairing adaptive reappraisal of negative experience, was associated most clearly with clinically predicted vulnerability to MDD.


Sign in / Sign up

Export Citation Format

Share Document